HEAL DSpace

Max-density revisited: A generalization and a more efficient algorithm

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgakopoulos, GF en
dc.contributor.author Politopoulos, K en
dc.date.accessioned 2014-03-01T01:26:34Z
dc.date.available 2014-03-01T01:26:34Z
dc.date.issued 2007 en
dc.identifier.issn 0010-4620 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18139
dc.subject Graphs en
dc.subject Maximum density subgraphs en
dc.subject Primal-dual technique en
dc.subject.classification Computer Science, Hardware & Architecture en
dc.subject.classification Computer Science, Information Systems en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.other Efficient algorithm en
dc.subject.other Graphs en
dc.subject.other Maximum density en
dc.subject.other Primal-dual technique en
dc.subject.other Subgraphs en
dc.subject.other Graphic methods en
dc.subject.other Approximation algorithms en
dc.title Max-density revisited: A generalization and a more efficient algorithm en
heal.type journalArticle en
heal.identifier.primary 10.1093/comjnl/bxl082 en
heal.identifier.secondary http://dx.doi.org/10.1093/comjnl/bxl082 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract We present an algorithm that given a graph computes a subgraph of maximum 'density'. (For unweighed graphs, density is the edges-to-vertices ratio). The proposed algorithm is asymptotically more efficient than the currently available ones. Our approach remains efficient for weighed graphs and more generally for weighed set-systems. Two faster approximation algorithms are offered, and a number of applications are discussed. © The Author 2007. en
heal.publisher OXFORD UNIV PRESS en
heal.journalName Computer Journal en
dc.identifier.doi 10.1093/comjnl/bxl082 en
dc.identifier.isi ISI:000246121700010 en
dc.identifier.volume 50 en
dc.identifier.issue 3 en
dc.identifier.spage 348 en
dc.identifier.epage 356 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής