HEAL DSpace

Maximizing the guarded boundary of an Art Gallery is APX-complete

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Fragoudakis, C en
dc.contributor.author Markou, E en
dc.contributor.author Zachos, S en
dc.date.accessioned 2014-03-01T01:26:34Z
dc.date.available 2014-03-01T01:26:34Z
dc.date.issued 2007 en
dc.identifier.issn 0925-7721 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18141
dc.subject Approximation algorithms en
dc.subject Art gallery en
dc.subject Visibility en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mathematics en
dc.title Maximizing the guarded boundary of an Art Gallery is APX-complete en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.comgeo.2006.12.001 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.comgeo.2006.12.001 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract In the Art Gallery problem, given is a polygonal gallery and the goal is to guard the gallery's interior or walls with a number of guards that must be placed strategically in the interior, on walls or on corners of the gallery. Here we consider a more realistic version: exhibits now have size and may have different costs. Moreover the meaning of guarding is relaxed: we use a new concept, that of watching an expensive art item, i.e. overseeing a part of the item. The main result of the paper is that the problem of maximizing the total value of a guarded weighted boundary is APX-complete. This is shown by an appropriate `gap-preserving' reduction from the MAX-5-OCCURRENCE-3-SAT problem. We also show that this technique can be applied to a number of maximization variations of the art gallery problem. In particular we consider the following problems: given a polygon with or without holes and k available guards, maximize a) the length of walls guarded and b) the total cost of paintings watched or overseen. We prove that all the above problems are APX-complete. (C) 2006 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Computational Geometry: Theory and Applications en
dc.identifier.doi 10.1016/j.comgeo.2006.12.001 en
dc.identifier.isi ISI:000249488900004 en
dc.identifier.volume 38 en
dc.identifier.issue 3 en
dc.identifier.spage 170 en
dc.identifier.epage 180 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής