dc.contributor.author |
Fragoudakis, C |
en |
dc.contributor.author |
Markou, E |
en |
dc.contributor.author |
Zachos, S |
en |
dc.date.accessioned |
2014-03-01T01:26:34Z |
|
dc.date.available |
2014-03-01T01:26:34Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0925-7721 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18141 |
|
dc.subject |
Approximation algorithms |
en |
dc.subject |
Art gallery |
en |
dc.subject |
Visibility |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.title |
Maximizing the guarded boundary of an Art Gallery is APX-complete |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.comgeo.2006.12.001 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.comgeo.2006.12.001 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
In the Art Gallery problem, given is a polygonal gallery and the goal is to guard the gallery's interior or walls with a number of guards that must be placed strategically in the interior, on walls or on corners of the gallery. Here we consider a more realistic version: exhibits now have size and may have different costs. Moreover the meaning of guarding is relaxed: we use a new concept, that of watching an expensive art item, i.e. overseeing a part of the item. The main result of the paper is that the problem of maximizing the total value of a guarded weighted boundary is APX-complete. This is shown by an appropriate `gap-preserving' reduction from the MAX-5-OCCURRENCE-3-SAT problem. We also show that this technique can be applied to a number of maximization variations of the art gallery problem. In particular we consider the following problems: given a polygon with or without holes and k available guards, maximize a) the length of walls guarded and b) the total cost of paintings watched or overseen. We prove that all the above problems are APX-complete. (C) 2006 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Computational Geometry: Theory and Applications |
en |
dc.identifier.doi |
10.1016/j.comgeo.2006.12.001 |
en |
dc.identifier.isi |
ISI:000249488900004 |
en |
dc.identifier.volume |
38 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
170 |
en |
dc.identifier.epage |
180 |
en |