HEAL DSpace

Memory-based classification with dynamic feature selection using self-organizing maps for pattern evaluation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Pateritsas, C en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T01:26:37Z
dc.date.available 2014-03-01T01:26:37Z
dc.date.issued 2007 en
dc.identifier.issn 0218-2130 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18156
dc.subject Classification en
dc.subject Feature weighting en
dc.subject Hybrid systems en
dc.subject Memory-based learning en
dc.subject Self-organizing maps en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.other Classification (of information) en
dc.subject.other Learning algorithms en
dc.subject.other Learning systems en
dc.subject.other Mathematical models en
dc.subject.other Pattern recognition en
dc.subject.other Feature weighting en
dc.subject.other Hybrid systems en
dc.subject.other Memory-based learning en
dc.subject.other Self organizing maps en
dc.title Memory-based classification with dynamic feature selection using self-organizing maps for pattern evaluation en
heal.type journalArticle en
heal.identifier.primary 10.1142/S0218213007003588 en
heal.identifier.secondary http://dx.doi.org/10.1142/S0218213007003588 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract Memory-based learning is one of the main fields in the area of machine learning. We propose a new methodology for addressing the classification task that relies on the main idea of the k-nearest neighbors algorithm, which is the most important representative of this field. In the proposed approach, given an unclassified pattern, a set of neighboring patterns is found, not necessarily using all input feature dimensions. Also, following the concept of the naïve Bayesian classifier, we adopt the assumption of independence of input features in the outcome of the classification task. The two concepts are merged in an attempt to take advantage of their good performance features. In order to further improve the performance of our approach, we propose a novel weighting scheme of the memory-base. Using the self-organizing maps model during the execution of the algorithm, dynamic weights of the memory-base patterns are produced. Experimental results have shown improved performance of the proposed method in comparison with the aforementioned algorithms and their variations. © World Scientific Publishing Company. en
heal.publisher WORLD SCIENTIFIC PUBL CO PTE LTD en
heal.journalName International Journal on Artificial Intelligence Tools en
dc.identifier.doi 10.1142/S0218213007003588 en
dc.identifier.isi ISI:000251390300006 en
dc.identifier.volume 16 en
dc.identifier.issue 5 en
dc.identifier.spage 875 en
dc.identifier.epage 899 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής