dc.contributor.author |
Dimopoulos, GG |
en |
dc.date.accessioned |
2014-03-01T01:26:41Z |
|
dc.date.available |
2014-03-01T01:26:41Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0045-7825 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18165 |
|
dc.subject |
Evolutionary algorithms |
en |
dc.subject |
Hybrid algorithms |
en |
dc.subject |
Mixed-variable optimization |
en |
dc.subject |
Particle swarm optimization |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Function evaluation |
en |
dc.subject.other |
Genetic algorithms |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Mixed-variable optimization |
en |
dc.subject.other |
Particle swarm optimization |
en |
dc.subject.other |
Simple genetic algorithm |
en |
dc.subject.other |
Struggle genetic algorithm |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Function evaluation |
en |
dc.subject.other |
Genetic algorithms |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Problem solving |
en |
dc.title |
Mixed-variable engineering optimization based on evolutionary and social metaphors |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.cma.2006.06.010 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.cma.2006.06.010 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
The co-existence of discrete and continuous independent variables in an engineering optimization problem with a multimodal objective function makes many methods incapable of solving the problem. Four methods are tested here: (a) a Simple Genetic Algorithm (SGA), (b) a Struggle Genetic Algorithm (StrGA), (c) a Particle Swarm Optimization Algorithm (PSOA), and (d) a Particle Swarm Optimization Algorithm with Struggle Selection (PSOStr). The last one has been developed by the author, and it is a hybrid of the evolutionary StrGA and the socially inspired PSOA. They are tested in four purely mathematical and three engineering optimization problems of the aforementioned type. All of the methods solved successfully all the problems and located the global optimum. The PSOStr, however, outperformed the other methods in terms of both solution accuracy and computational cost (i.e. function evaluations). (c) 2006 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE SA |
en |
heal.journalName |
Computer Methods in Applied Mechanics and Engineering |
en |
dc.identifier.doi |
10.1016/j.cma.2006.06.010 |
en |
dc.identifier.isi |
ISI:000242648300006 |
en |
dc.identifier.volume |
196 |
en |
dc.identifier.issue |
4-6 |
en |
dc.identifier.spage |
803 |
en |
dc.identifier.epage |
817 |
en |