HEAL DSpace

Model predictive temperature control in long ducts by means of a neural network approximation tool

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Aggelogiannaki, E en
dc.contributor.author Sarimveis, H en
dc.contributor.author Koubogiannis, D en
dc.date.accessioned 2014-03-01T01:26:41Z
dc.date.available 2014-03-01T01:26:41Z
dc.date.issued 2007 en
dc.identifier.issn 1359-4311 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18168
dc.subject Hyperbolic distributed parameter systems en
dc.subject Long ducts en
dc.subject Model predictive control en
dc.subject Radial basis function neural networks en
dc.subject Temperature control en
dc.subject.classification Thermodynamics en
dc.subject.classification Energy & Fuels en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other Approximation theory en
dc.subject.other Computational methods en
dc.subject.other Model predictive control en
dc.subject.other Nonlinear systems en
dc.subject.other Radial basis function networks en
dc.subject.other Temperature control en
dc.subject.other Conventional modeling en
dc.subject.other Hyperbolic distributed parameter systems en
dc.subject.other Long ducts en
dc.subject.other Neural network approximation tools en
dc.subject.other Ducts en
dc.title Model predictive temperature control in long ducts by means of a neural network approximation tool en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.applthermaleng.2007.03.005 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.applthermaleng.2007.03.005 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract In this paper, a nonlinear model predictive control (MPC) configuration for hyperbolic distributed thermal systems is presented and applied in the flow-based temperature control in a long duct. At first, a radial basis function neural network is developed to estimate the temperature distribution along the duct with respect to flow velocity, assuming constant ambient temperature. The nonlinear model is then incorporated in the context of an MPC procedure. The use of the neural network model avoids the spatial discretization and decreases significantly the computational effort required to solve the optimization problem that is formulated in real time, compared to conventional modeling approaches. The proposed MPC scheme is able to overcome delay effects and accelerates the outlet temperature response. Reduced tuning effort is another advantage of the proposed control scheme. (c) 2007 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Applied Thermal Engineering en
dc.identifier.doi 10.1016/j.applthermaleng.2007.03.005 en
dc.identifier.isi ISI:000247865200003 en
dc.identifier.volume 27 en
dc.identifier.issue 14-15 en
dc.identifier.spage 2363 en
dc.identifier.epage 2369 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής