dc.contributor.author |
Aizicovici, S |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Staicu, V |
en |
dc.date.accessioned |
2014-03-01T01:26:43Z |
|
dc.date.available |
2014-03-01T01:26:43Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0022-0396 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18193 |
|
dc.subject |
Degree theory |
en |
dc.subject |
Local minimizers |
en |
dc.subject |
Periodic solutions |
en |
dc.subject |
Scalar p-Laplacian |
en |
dc.subject |
Solutions of constant sign |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
EXISTENCE |
en |
dc.subject.other |
EQUATIONS |
en |
dc.title |
Multiple nontrivial solutions for nonlinear periodic problems with the p-Laplacian |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jde.2007.05.012 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jde.2007.05.012 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
We consider a nonlinear periodic problem driven by the scalar p-Laplacian with a nonsmooth potential (hemivariational inequality). Using the degree theory for multivalued perturbations of (S)+-operators and the spectrum of a class of weighted eigenvalue problems for the scalar p-Laplacian, we prove the existence of at least three distinct nontrivial solutions, two of which have constant sign. (C) 2007 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Journal of Differential Equations |
en |
dc.identifier.doi |
10.1016/j.jde.2007.05.012 |
en |
dc.identifier.isi |
ISI:000252285300018 |
en |
dc.identifier.volume |
243 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
504 |
en |
dc.identifier.epage |
535 |
en |