HEAL DSpace

Multiple-zone sliding contact with friction on an anisotropic thermoelastic half-space

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Brock, LM en
dc.contributor.author Georgiadis, HG en
dc.date.accessioned 2014-03-01T01:26:43Z
dc.date.available 2014-03-01T01:26:43Z
dc.date.issued 2007 en
dc.identifier.issn 0020-7683 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18195
dc.subject Anisotropic materials en
dc.subject Contact mechanics en
dc.subject Integral transforms en
dc.subject Singular integral equations en
dc.subject Sliding contact problems en
dc.subject Thermal stresses en
dc.subject Transverse isotropy en
dc.subject.classification Mechanics en
dc.subject.other Deformation en
dc.subject.other Friction en
dc.subject.other Integral equations en
dc.subject.other Mathematical transformations en
dc.subject.other Problem solving en
dc.subject.other Thermal effects en
dc.subject.other Thermoelasticity en
dc.subject.other Anisotropic materials en
dc.subject.other Contact mechanics en
dc.subject.other Singular integral equations en
dc.subject.other Sliding contact problems en
dc.subject.other Transverse isotropy en
dc.subject.other Materials science en
dc.title Multiple-zone sliding contact with friction on an anisotropic thermoelastic half-space en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijsolstr.2006.08.023 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijsolstr.2006.08.023 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract The paper studies a class of multiple-zone sliding contact problems. This class is general enough to include frictional and thermal effects, and anisotropic response of the indented material. In particular, a rigid die (indenter) slides with Coulomb friction and at constant speed over the surface of a deformable and conducting body in the form of a 2D half-space. The body is assumed to behave as a thermoelastic transversely isotropic material. Thermoelasticity of the Green-Lindsay type is assumed to govern. The solution method is based on integral transforms and singular integral equations. First, an exact transform solution for the auxiliary problem of multiple-zone (integer n > 1) surface tractions is obtained. Then, an asymptotic form for this auxiliary problem is extracted. This form can be inverted analytically, and the result applied to sliding contacts with multiple zones. For illustration, detailed calculations are provided for the case of two (n = 2) contact zones. The solution yields the contact zone width and location in terms of sliding speed, friction, die profile, and also the force exerted. Calculations for the hexagonal material zinc illustrate effects of speed, friction and line of action of the die force on relative contact zone size, location of maximal values for the temperature and the compressive stress, and the maximum temperature for a given maximum stress. Finally, from our general results, a single contact zone solution follows as a simple limit. (c) 2006 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Solids and Structures en
dc.identifier.doi 10.1016/j.ijsolstr.2006.08.023 en
dc.identifier.isi ISI:000245769500013 en
dc.identifier.volume 44 en
dc.identifier.issue 9 en
dc.identifier.spage 2820 en
dc.identifier.epage 2836 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής