HEAL DSpace

Multiscale modeling in nanomaterials science

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karakasidis, TE en
dc.contributor.author Charitidis, CA en
dc.date.accessioned 2014-03-01T01:26:43Z
dc.date.available 2014-03-01T01:26:43Z
dc.date.issued 2007 en
dc.identifier.issn 0928-4931 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18197
dc.subject Finite elements method en
dc.subject Kinetic Monte Carlo en
dc.subject Molecular dynamics en
dc.subject Multiscale modeling en
dc.subject Nanomaterials en
dc.subject Nanoscience en
dc.subject.classification Materials Science, Multidisciplinary en
dc.subject.other Chemical vapor deposition en
dc.subject.other Electronic structure en
dc.subject.other Finite element method en
dc.subject.other Materials science en
dc.subject.other Molecular dynamics en
dc.subject.other Kinetic Monte Carlo en
dc.subject.other Multiscale modeling en
dc.subject.other Nanostructured materials en
dc.title Multiscale modeling in nanomaterials science en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.msec.2006.06.029 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.msec.2006.06.029 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract Nanoscience is an area with increasing interest both in the physicochemical phenomena involved and the potential applications such as silicon carbide films, carbon nanotubes, quantum dots, MEMS etc. These materials exhibit very interesting properties (electronic, optical, mechanical) at various length/time scales necessitating better insight. Modem fabrication techniques, such as CVD, also require better understanding in a wide range of length/time scales, in order to achieve better process control. Multiscale modeling is a new, fast developing and challenging scientific field with contributions from many scientific disciplines in an effort to assure materials simulation across length/time scales. In this paper we present a brief review of recent advances in multiscale materials modeling. First, a classification of existing simulation methods based on time and length scales is presented along with basic principles of the multiscale approach. More specifically, we focus on electronic structure calculations, classical atomistic simulation with molecular dynamics or monte carlo methods at the nano/micro scale, Kinetic Monte Carlo for larger system/time scales and finite elements for very large scales. Then, we present the hierarchical and the hybrid strategies of multiscale modeling to couple these methods. Finally, we deal with selected applications concerning thin film CVD deposition and mechanical behavior of carbon nanotubes and we conclude presenting an overview of future trends of multiscale modeling. (c) 2006 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Materials Science and Engineering C en
dc.identifier.doi 10.1016/j.msec.2006.06.029 en
dc.identifier.isi ISI:000249476800033 en
dc.identifier.volume 27 en
dc.identifier.issue 5-8 SPEC. ISS. en
dc.identifier.spage 1082 en
dc.identifier.epage 1089 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής