HEAL DSpace

Multi-scaled analysis of the damped dynamics of an elastic rod with an essentially nonlinear end attachment

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Panagopoulos, P en
dc.contributor.author Georgiades, F en
dc.contributor.author Tsakirtzis, S en
dc.contributor.author Vakakis, AF en
dc.contributor.author Bergman, LA en
dc.date.accessioned 2014-03-01T01:26:43Z
dc.date.available 2014-03-01T01:26:43Z
dc.date.issued 2007 en
dc.identifier.issn 0020-7683 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18198
dc.subject Essential nonlinearity en
dc.subject Multi-scaled analysis en
dc.subject Nonlinear damped transitions en
dc.subject.classification Mechanics en
dc.subject.other Essential nonlinearity en
dc.subject.other Frequency-energy plot (FEP) en
dc.subject.other Multi-scaled analysis en
dc.subject.other Nonlinear damped transitions en
dc.subject.other Damping en
dc.subject.other Dynamical systems en
dc.subject.other Hamiltonians en
dc.subject.other Hilbert spaces en
dc.subject.other Stiffness en
dc.subject.other Viscosity en
dc.subject.other Wavelet transforms en
dc.subject.other Nonlinear systems en
dc.title Multi-scaled analysis of the damped dynamics of an elastic rod with an essentially nonlinear end attachment en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijsolstr.2007.02.025 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijsolstr.2007.02.025 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract We study multi-frequency transitions in the transient dynamics of a viscously damped dispersive finite rod with an essentially nonlinear end attachment. The attachment consists of a small mass connected to the rod by means of an essentially nonlinear stiffness in parallel to a viscous damper. First, the periodic orbits of the underlying harniltonian system with no damping are computed, and depicted in a frequency-energy plot (FEP). This representation enables one to clearly distinguish between the different types of periodic motions, forming back bone curves and subharmonic tongues. Then the damped dynamics of the system is computed; the rod and attachment responses are initially analyzed by the numerical Morlet wavelet transform (WT), and then by the empirical mode decomposition (EMD) or Hilbert-Huang transform (HTT), whereby, the time series are decomposed in terms of intrinsic mode functions (IMFs) at different characteristic time scales (or, equivalently, frequency scales). Comparisons of the evolutions of the instantaneous frequencies of the IMFs to the WT spectra of the time series enables one to identify the dominant IMFs of the signals, as well as, the time scales at which the dominant dynamics evolve at different time windows of the responses; hence, it is possible to reconstruct complex transient responses as superposition of the dominant IMFs involving different time scales of the dynamical response. Moreover, by superimposing the WT spectra and the instantaneous frequencies of the IMFs to the FEPs of the underlying hamiltonian system, one is able to clearly identify the multi-scaled transitions that occur in the transient damped dynamics, and to interpret them as 'jumps' between different branches of periodic orbits of the underlying hamiltonian system. As a result, this work develops a physics-based, multi-scaled framework and provides the necessary computational tools for multi-scaled analysis of complex multi-frequency transitions of essentially nonlinear dynamical systems. (c) 2007 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Solids and Structures en
dc.identifier.doi 10.1016/j.ijsolstr.2007.02.025 en
dc.identifier.isi ISI:000249214700027 en
dc.identifier.volume 44 en
dc.identifier.issue 18-19 en
dc.identifier.spage 6256 en
dc.identifier.epage 6278 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής