dc.contributor.author |
Nerantzaki, MS |
en |
dc.contributor.author |
Katsikadelis, JT |
en |
dc.date.accessioned |
2014-03-01T01:26:44Z |
|
dc.date.available |
2014-03-01T01:26:44Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0939-1533 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18204 |
|
dc.subject |
Analog equation method |
en |
dc.subject |
Boundary element method |
en |
dc.subject |
Circular plate |
en |
dc.subject |
Large deflections |
en |
dc.subject |
Nonlinear |
en |
dc.subject |
Variable thickness |
en |
dc.subject |
Vibrations |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Boundary element method |
en |
dc.subject.other |
Dynamical systems |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Plates (structural components) |
en |
dc.subject.other |
Thickness measurement |
en |
dc.subject.other |
Analog equation methods |
en |
dc.subject.other |
Circular plates |
en |
dc.subject.other |
Large deflections |
en |
dc.subject.other |
Variable thickness |
en |
dc.subject.other |
Nonlinear analysis |
en |
dc.title |
Nonlinear dynamic analysis of circular plates with varying thickness |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00419-006-0097-6 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00419-006-0097-6 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
The BEM is developed for nonlinear free and forced vibrations of circular plates with variable thickness undergoing large deflections. General boundary conditions are considered, which may be also nonlinear. The problem is formulated in terms of displacements. The solution is based on the concept of the analog equation, according to which the two coupled nonlinear differential equations with variable coefficients pertaining to the in-plane radial and transverse deformation are converted to two uncoupled linear ones of a substitute beam with unit axial and unit bending stiffness, respectively, under fictitious quasi-static load distributions. Numerical examples are presented which illustrate the method and demonstrate its accuracy. © Springer-Verlag 2007. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Archive of Applied Mechanics |
en |
dc.identifier.doi |
10.1007/s00419-006-0097-6 |
en |
dc.identifier.isi |
ISI:000245965000002 |
en |
dc.identifier.volume |
77 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
381 |
en |
dc.identifier.epage |
391 |
en |