HEAL DSpace

Nonlinear Kalman filtering algorithms for on-line calibration of dynamic traffic assignment models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Antoniou, C en
dc.contributor.author Ben-Akiva, M en
dc.contributor.author Koutsopoulos, HN en
dc.date.accessioned 2014-03-01T01:26:44Z
dc.date.available 2014-03-01T01:26:44Z
dc.date.issued 2007 en
dc.identifier.issn 1524-9050 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18207
dc.subject Dynamic traffic assignment (DTA) en
dc.subject Extended Kalman filter (EKF) en
dc.subject Limiting extended Kalman filter (LimEKF) en
dc.subject Nonlinear optimization en
dc.subject On-line calibration en
dc.subject Unscented Kalman filter (UKF) en
dc.subject.classification Engineering, Civil en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Transportation Science & Technology en
dc.subject.other Dynamic traffic assignment (DTA) en
dc.subject.other Limiting extended Kalman filter (LimEKF) en
dc.subject.other Nonlinear optimization en
dc.subject.other On-line calibration en
dc.subject.other Unscented Kalman filter (UKF) en
dc.subject.other Algorithms en
dc.subject.other Extended Kalman filters en
dc.subject.other Mathematical models en
dc.subject.other Nonlinear filtering en
dc.subject.other Optimization en
dc.subject.other Robustness (control systems) en
dc.subject.other Traffic control en
dc.title Nonlinear Kalman filtering algorithms for on-line calibration of dynamic traffic assignment models en
heal.type journalArticle en
heal.identifier.primary 10.1109/TITS.2007.908569 en
heal.identifier.secondary http://dx.doi.org/10.1109/TITS.2007.908569 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract An online calibration approach that jointly estimates demand and supply parameters of dynamic traffic assignment (DTA) systems is presented and empirically validated through an extensive application. The problem can be formulated as a nonlinear state-space model. Because of its nonlinear nature, the resulting model cannot be solved by the Kalman filter, and therefore, nonlinear extensions need to be considered. The following three extensions to the Kalman filtering algorithm are presented: 1) the extended Kalman filter (EKF); 2) the limiting EKF (LimEKF); and 3) the unscented Kalman filter. The solution algorithms are applied to the on-line calibration of the state-of-the-art DynaMIT DTA model, and their use is demonstrated in a freeway network in Southampton, U.K. The LimEKF shows accuracy that is comparable to that of the best algorithm but with vastly superior computational performance. The robustness of the approach to varying weather conditions is demonstrated, and practical aspects are discussed. © 2006 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Intelligent Transportation Systems en
dc.identifier.doi 10.1109/TITS.2007.908569 en
dc.identifier.isi ISI:000251589900010 en
dc.identifier.volume 8 en
dc.identifier.issue 4 en
dc.identifier.spage 661 en
dc.identifier.epage 670 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής