dc.contributor.author |
Antoniou, C |
en |
dc.contributor.author |
Ben-Akiva, M |
en |
dc.contributor.author |
Koutsopoulos, HN |
en |
dc.date.accessioned |
2014-03-01T01:26:44Z |
|
dc.date.available |
2014-03-01T01:26:44Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
1524-9050 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18207 |
|
dc.subject |
Dynamic traffic assignment (DTA) |
en |
dc.subject |
Extended Kalman filter (EKF) |
en |
dc.subject |
Limiting extended Kalman filter (LimEKF) |
en |
dc.subject |
Nonlinear optimization |
en |
dc.subject |
On-line calibration |
en |
dc.subject |
Unscented Kalman filter (UKF) |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Transportation Science & Technology |
en |
dc.subject.other |
Dynamic traffic assignment (DTA) |
en |
dc.subject.other |
Limiting extended Kalman filter (LimEKF) |
en |
dc.subject.other |
Nonlinear optimization |
en |
dc.subject.other |
On-line calibration |
en |
dc.subject.other |
Unscented Kalman filter (UKF) |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Extended Kalman filters |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Nonlinear filtering |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Robustness (control systems) |
en |
dc.subject.other |
Traffic control |
en |
dc.title |
Nonlinear Kalman filtering algorithms for on-line calibration of dynamic traffic assignment models |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TITS.2007.908569 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TITS.2007.908569 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
An online calibration approach that jointly estimates demand and supply parameters of dynamic traffic assignment (DTA) systems is presented and empirically validated through an extensive application. The problem can be formulated as a nonlinear state-space model. Because of its nonlinear nature, the resulting model cannot be solved by the Kalman filter, and therefore, nonlinear extensions need to be considered. The following three extensions to the Kalman filtering algorithm are presented: 1) the extended Kalman filter (EKF); 2) the limiting EKF (LimEKF); and 3) the unscented Kalman filter. The solution algorithms are applied to the on-line calibration of the state-of-the-art DynaMIT DTA model, and their use is demonstrated in a freeway network in Southampton, U.K. The LimEKF shows accuracy that is comparable to that of the best algorithm but with vastly superior computational performance. The robustness of the approach to varying weather conditions is demonstrated, and practical aspects are discussed. © 2006 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Intelligent Transportation Systems |
en |
dc.identifier.doi |
10.1109/TITS.2007.908569 |
en |
dc.identifier.isi |
ISI:000251589900010 |
en |
dc.identifier.volume |
8 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
661 |
en |
dc.identifier.epage |
670 |
en |