dc.contributor.author |
Pappas, A |
en |
dc.contributor.author |
Sarantopoulos, Y |
en |
dc.contributor.author |
Tonge, A |
en |
dc.date.accessioned |
2014-03-01T01:26:44Z |
|
dc.date.available |
2014-03-01T01:26:44Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0024-6093 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18209 |
|
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
SPACES |
en |
dc.title |
Norm attaining polynomials |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1112/blms/bdl033 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1112/blms/bdl033 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
If L 0 0 is a continuous symmetric n-linear form on a Banach space and (L) over cap is the associated continuous n-homogeneous polynomial, the ratio parallel to L parallel to//parallel to(L) over bar parallel to always lies between 1 and n(n)/n!. At one extreme, if L is defined on Hilbert space, then parallel to L parallel to/parallel to(L) over bar parallel to = 1. If L attains norm on Hilbert space, then L also attains norm; in this case, we give an explicit construction to provide a unit vector x(0) with parallel to(L) over bar parallel to = vertical bar(L) over bar (x(0))vertical bar = parallel to L parallel to. At the other extreme, if parallel to L parallel to/parallel to(L) over bar parallel to = n(n)/n! and L attains norm, then (L) over cap attains norm. We prove that in general the converse is not true. |
en |
heal.publisher |
LONDON MATH SOC |
en |
heal.journalName |
Bulletin of the London Mathematical Society |
en |
dc.identifier.doi |
10.1112/blms/bdl033 |
en |
dc.identifier.isi |
ISI:000247052300013 |
en |
dc.identifier.volume |
39 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
255 |
en |
dc.identifier.epage |
264 |
en |