dc.contributor.author |
Papageorgiou, EH |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:26:45Z |
|
dc.date.available |
2014-03-01T01:26:45Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
1056-2176 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18216 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-34248570675&partnerID=40&md5=60a05bb4f2f1a5993044dd6c42679dd4 |
en |
dc.relation.uri |
http://www.dynamicpublishers.com/DSA/dsa2007pdf/175-186-Papageorgiou.pdf |
en |
dc.subject |
Bounded Domain |
en |
dc.subject |
Multiple Solution |
en |
dc.subject |
Nonlinear Elliptic Problem |
en |
dc.subject |
Potential Function |
en |
dc.subject |
Variational Approach |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BOUNDARY-VALUE-PROBLEMS |
en |
dc.subject.other |
LINEAR ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
CRITICAL-POINT THEORY |
en |
dc.subject.other |
PERTURBATIONS |
en |
dc.subject.other |
SOLVABILITY |
en |
dc.subject.other |
INFINITY |
en |
dc.title |
On multiple solutions for strongly resonant problems with the p-Laplacian |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
We study a nonlinear elliptic problem driven by the p-Laplacian and with a nonsmooth potential function (hemivariational inequality). On the nonsmooth potential we impose conditions of strong resonance. Following a variational approach based on the nonsmooth critical point theory and the second deformation theorem, we establish the existence of at least two nontrivial smooth solutions. © Dynamic Publishers, Inc. |
en |
heal.publisher |
DYNAMIC PUBLISHERS, INC |
en |
heal.journalName |
Dynamic Systems and Applications |
en |
dc.identifier.isi |
ISI:000245583500012 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
1 SPEC. ISS. |
en |
dc.identifier.spage |
175 |
en |
dc.identifier.epage |
186 |
en |