HEAL DSpace

Optimizing feedforward artificial neural network architecture

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Benardos, PG en
dc.contributor.author Vosniakos, GC en
dc.date.accessioned 2014-03-01T01:26:50Z
dc.date.available 2014-03-01T01:26:50Z
dc.date.issued 2007 en
dc.identifier.issn 0952-1976 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18248
dc.subject feedforward artificial neural networks en
dc.subject ANN architecture en
dc.subject generalization en
dc.subject genetic algorithms en
dc.subject engineering problems en
dc.subject.classification Automation & Control Systems en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other GENETIC ALGORITHMS en
dc.subject.other PERFORMANCE en
dc.subject.other DESIGN en
dc.subject.other SYSTEM en
dc.title Optimizing feedforward artificial neural network architecture en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.engappai.2006.06.005 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.engappai.2006.06.005 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract Despite the fact that feedforward artificial neural networks (ANNs) have been a hot topic of research for many years there still are certain issues regarding the development of an ANN model, resulting in a lack of absolute guarantee that the model will perform well for the problem at hand. The multitude of different approaches that have been adopted in order to deal with this problem have investigated all aspects of the ANN modelling procedure, from training data collection and pre/post-processing to elaborate training schemes and algorithms. Increased attention is especially directed to proposing a systematic way to establish an appropriate architecture in contrast to the current common practice that calls for a repetitive trial-and-error process, which is time-consuming and produces uncertain results. This paper proposes such a methodology for determining the best architecture and is based on the use of a genetic algorithm (GA) and the development of novel criteria that quantify an ANN's performance (both training and generalization) as well as its complexity. This approach is implemented in software and tested based on experimental data capturing workpiece elastic deflection in turning. The intention is to present simultaneously the approach's theoretical background and its practical application in real-life engineering problems. Results show that the approach performs better than a human expert, at the same time offering many advantages in comparison to similar approaches found in literature. (c) 2006 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE en
dc.identifier.doi 10.1016/j.engappai.2006.06.005 en
dc.identifier.isi ISI:000245477700006 en
dc.identifier.volume 20 en
dc.identifier.issue 3 en
dc.identifier.spage 365 en
dc.identifier.epage 382 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής