HEAL DSpace

Optimum design of structures subjected to follower forces

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Katsikadelis, JT en
dc.contributor.author Tsiatas, GC en
dc.date.accessioned 2014-03-01T01:26:50Z
dc.date.available 2014-03-01T01:26:50Z
dc.date.issued 2007 en
dc.identifier.issn 0020-7403 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18249
dc.subject Analog equation method en
dc.subject Beams en
dc.subject Dynamic stability en
dc.subject Nonconservative load en
dc.subject Shape optimization en
dc.subject Variable cross-section en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.other Cantilever beams en
dc.subject.other Compressive stress en
dc.subject.other Shape optimization en
dc.subject.other Stability en
dc.subject.other Stiffness en
dc.subject.other Analog equation method en
dc.subject.other Eigenvalue sensitivity en
dc.subject.other Euler-Bernoulli theory en
dc.subject.other Hyperbolic differential equation en
dc.subject.other Nonconservative load en
dc.subject.other Variable cross-section en
dc.subject.other Structural design en
dc.title Optimum design of structures subjected to follower forces en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijmecsci.2007.03.011 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijmecsci.2007.03.011 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract In this paper, shape optimization is used to optimize the critical load of an Euler-Bernoulli cantilever beam with constant volume subjected to a tangential compressive tip load and/or a tangential compressive load arbitrarily distributed along the beam. This is achieved by varying appropriately the beam cross-section, thus its stiffness and mass properties, along its length, so that the critical load reaches its maximum or a prescribed value. The problem is reduced to a nonlinear optimization problem under equality and inequality constraints as well as specified lower and upper bounds, which, together with large slenderness ratios, ensure the validity of the Euler-Bernoulli theory and the serviceability of the beam. The evaluation of the objective function requires the solution of the dynamic stability problem of a cantilever beam with variable cross-section. This problem is solved using the analog equation method (AEM) of Katsikadelis for the fourth-order hyperbolic differential equation with variable coefficients, together with a simple and direct iterative method for the evaluation of the critical load based on the eigenvalue sensitivity. Besides its accuracy, this method overcomes the shortcoming of a possible FEM solution, which would require resizing of the elements and re-computation of their stiffness properties during the optimization process. Example problems of various types of follower forces are presented, which illustrate the method and demonstrate its applicability and efficiency. (C) 2007 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Mechanical Sciences en
dc.identifier.doi 10.1016/j.ijmecsci.2007.03.011 en
dc.identifier.isi ISI:000251070400002 en
dc.identifier.volume 49 en
dc.identifier.issue 11 en
dc.identifier.spage 1204 en
dc.identifier.epage 1212 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής