dc.contributor.author |
Moslehian, MS |
en |
dc.contributor.author |
Rassias, TM |
en |
dc.date.accessioned |
2014-03-01T01:26:51Z |
|
dc.date.available |
2014-03-01T01:26:51Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
00019054 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18253 |
|
dc.subject |
Banach module |
en |
dc.subject |
C *-algebra |
en |
dc.subject |
Hyers-Ulam stability |
en |
dc.subject |
Orthogonality |
en |
dc.subject |
Orthogonality space |
en |
dc.subject |
Orthogonally additive mapping |
en |
dc.subject |
Orthogonally additive type equation |
en |
dc.subject |
Orthogonally quadratic mapping |
en |
dc.title |
Orthogonal stability of additive type equations |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00010-006-2868-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00010-006-2868-0 |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Suppose that ( equation prsented ) is a symmetric orthogonality module and γ a Banach module over a unital Banach algebra equation prsented is a mapping satisfying equation prsented, for k = 1 or 2, for some ε 0, for all a in the unit sphere equation prsented and all equation prsented. Assume that the mapping equation prsented is continuous for each fixed equation prsented. Then there exists a unique equation prsented : equation prsented = aT(x), a equation prsented such that equation prsented, for all equation prsented. © Birkhäuser Verlag, Basel 2007. |
en |
heal.journalName |
Aequationes Mathematicae |
en |
dc.identifier.doi |
10.1007/s00010-006-2868-0 |
en |
dc.identifier.volume |
73 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
249 |
en |
dc.identifier.epage |
259 |
en |