dc.contributor.author |
Juyumaya, J |
en |
dc.contributor.author |
Lambropoulou, S |
en |
dc.date.accessioned |
2014-03-01T01:26:52Z |
|
dc.date.available |
2014-03-01T01:26:52Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0166-8641 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18263 |
|
dc.subject |
Inverse limits |
en |
dc.subject |
p-adic framed braids |
en |
dc.subject |
p-adic infinite cablings |
en |
dc.subject |
p-adic integers |
en |
dc.subject |
p-adic Markov traces |
en |
dc.subject |
p-adic Yokonuma-Hecke algebras |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
HECKE ALGEBRAS |
en |
dc.subject.other |
3-MANIFOLDS |
en |
dc.title |
p-Adic framed braids |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.topol.2007.01.010 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.topol.2007.01.010 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
In this paper we define the p-adic framed braid group F-infinity.n, arising as the inverse limit of the modular framed braids. An element in F-infinity.n can be interpreted geometrically as an infinite framed cabling. F-infinity.n contains the classical framed braid group as a dense subgroup. This leads to a set of topological generators for F-infinity.n. and to approximations for the p-adic framed braids. We further construct a p-adic Yokonuma-Hecke algebra Y-infinity.n (u) as the inverse limit of a family of classical Yokonurna-Hecke algebras. These are quotients of the modular framed braid groups over a quadratic relation. Finally, we give topological generators for Y-infinity.n (u). (C) 2007 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Topology and its Applications |
en |
dc.identifier.doi |
10.1016/j.topol.2007.01.010 |
en |
dc.identifier.isi |
ISI:000246102300021 |
en |
dc.identifier.volume |
154 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
1804 |
en |
dc.identifier.epage |
1826 |
en |