p-Adic framed braids

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Juyumaya, J en
dc.contributor.author Lambropoulou, S en
dc.date.accessioned 2014-03-01T01:26:52Z
dc.date.available 2014-03-01T01:26:52Z
dc.date.issued 2007 en
dc.identifier.issn 0166-8641 en
dc.identifier.uri http://hdl.handle.net/123456789/18263
dc.subject Inverse limits en
dc.subject p-adic framed braids en
dc.subject p-adic infinite cablings en
dc.subject p-adic integers en
dc.subject p-adic Markov traces en
dc.subject p-adic Yokonuma-Hecke algebras en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mathematics en
dc.subject.other HECKE ALGEBRAS en
dc.subject.other 3-MANIFOLDS en
dc.title p-Adic framed braids en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.topol.2007.01.010 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.topol.2007.01.010 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract In this paper we define the p-adic framed braid group F-infinity.n, arising as the inverse limit of the modular framed braids. An element in F-infinity.n can be interpreted geometrically as an infinite framed cabling. F-infinity.n contains the classical framed braid group as a dense subgroup. This leads to a set of topological generators for F-infinity.n. and to approximations for the p-adic framed braids. We further construct a p-adic Yokonuma-Hecke algebra Y-infinity.n (u) as the inverse limit of a family of classical Yokonurna-Hecke algebras. These are quotients of the modular framed braid groups over a quadratic relation. Finally, we give topological generators for Y-infinity.n (u). (C) 2007 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Topology and its Applications en
dc.identifier.doi 10.1016/j.topol.2007.01.010 en
dc.identifier.isi ISI:000246102300021 en
dc.identifier.volume 154 en
dc.identifier.issue 8 en
dc.identifier.spage 1804 en
dc.identifier.epage 1826 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record