HEAL DSpace

Path multicoloring with fewer colors in spiders and caterpillars

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Pagourtzis, A en
dc.contributor.author Potika, K en
dc.contributor.author Zachos, S en
dc.date.accessioned 2014-03-01T01:26:52Z
dc.date.available 2014-03-01T01:26:52Z
dc.date.issued 2007 en
dc.identifier.issn 0010-485X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18268
dc.subject Approximation algorithms en
dc.subject Caterpillars en
dc.subject Multifiber all-optical networks en
dc.subject Path coloring en
dc.subject Spiders en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Approximation ratio en
dc.subject.other Multifiber all-optical networks en
dc.subject.other Path multicoloring en
dc.subject.other Approximation algorithms en
dc.subject.other Numerical methods en
dc.subject.other Optimization en
dc.subject.other Problem solving en
dc.subject.other Fiber optic networks en
dc.title Path multicoloring with fewer colors in spiders and caterpillars en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00607-007-0234-2 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00607-007-0234-2 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract We study a recently introduced path coloring problem with applications to wavelength assignment in all-optical networks with multiple fibers. In contrast to classical path coloring, it is, in this setting, possible to assign a color more than once to paths that pass through the same edge; the number of allowed repetitions per edge is given and the goal is to minimize the number of colors used. We present algorithms and hardness results for tree topologies of special interest. Our algorithms achieve approximation ratio of 2 in spiders and 3 in caterpillars, whereas the best algorithm for trees so far, achieves an approximation ratio of 4. We also study the directed version of the problem and show that it admits a 3-approximation algorithm in caterpillars, while it can be solved exactly in spiders. © 2007 Springer. en
heal.publisher SPRINGER WIEN en
heal.journalName Computing (Vienna/New York) en
dc.identifier.doi 10.1007/s00607-007-0234-2 en
dc.identifier.isi ISI:000248376200004 en
dc.identifier.volume 80 en
dc.identifier.issue 3 en
dc.identifier.spage 255 en
dc.identifier.epage 274 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής