dc.contributor.author |
Repoulias, F |
en |
dc.contributor.author |
Papadopoulos, E |
en |
dc.date.accessioned |
2014-03-01T01:26:55Z |
|
dc.date.available |
2014-03-01T01:26:55Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0029-8018 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18278 |
|
dc.subject |
Tracking control |
en |
dc.subject |
Trajectory planning |
en |
dc.subject |
Underactuated AUV |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Engineering, Ocean |
en |
dc.subject.classification |
Oceanography |
en |
dc.subject.classification |
Water Resources |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Motion planning |
en |
dc.subject.other |
Robustness (control systems) |
en |
dc.subject.other |
Velocity |
en |
dc.subject.other |
Backstepping techniques |
en |
dc.subject.other |
Tracking control |
en |
dc.subject.other |
Trajectory planning |
en |
dc.subject.other |
Vehicle dynamics |
en |
dc.subject.other |
Autonomous underwater vehicles |
en |
dc.subject.other |
Autonomous underwater vehicles |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Motion planning |
en |
dc.subject.other |
Robustness (control systems) |
en |
dc.subject.other |
Velocity |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
autonomous underwater vehicle |
en |
dc.subject.other |
control system |
en |
dc.subject.other |
tracking |
en |
dc.subject.other |
trajectory |
en |
dc.title |
Planar trajectory planning and tracking control design for underactuated AUVs |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.oceaneng.2006.11.007 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.oceaneng.2006.11.007 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
This paper addresses the combined problem of trajectory planning and tracking control for underactuated autonomous underwater vehicles (AUVs) on the horizontal plane. Given a smooth, inertial, 2D reference trajectory, the planning algorithm uses vehicle dynamics to compute the reference orientation and body-fixed velocities. Using these, the error dynamics are obtained. These are stabilized using backstepping techniques, forcing the tracking error to an arbitrarily small neighborhood of zero. Simulation results for a constant velocity trajectory, i.e. a circle, and a time-varying velocity one, i.e. a sinusoidal path, are presented. The parametric robustness is considered and it is shown that tracking remains satisfactory. (c) 2007 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Ocean Engineering |
en |
dc.identifier.doi |
10.1016/j.oceaneng.2006.11.007 |
en |
dc.identifier.isi |
ISI:000247860900014 |
en |
dc.identifier.volume |
34 |
en |
dc.identifier.issue |
11-12 |
en |
dc.identifier.spage |
1650 |
en |
dc.identifier.epage |
1667 |
en |