HEAL DSpace

Projective and coarse projective integration for problems with continuous symmetries

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kavousanakis, ME en
dc.contributor.author Erban, R en
dc.contributor.author Boudouvis, AG en
dc.contributor.author Gear, CW en
dc.contributor.author Kevrekidis, IG en
dc.date.accessioned 2014-03-01T01:26:56Z
dc.date.available 2014-03-01T01:26:56Z
dc.date.issued 2007 en
dc.identifier.issn 0021-9991 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18290
dc.subject Coarse projective integration en
dc.subject Continuous symmetry en
dc.subject Dynamic renormalization en
dc.subject Multiscale computation en
dc.subject Projective integration en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Physics, Mathematical en
dc.subject.other NONLINEAR SCHRODINGER-EQUATION en
dc.subject.other SELF-SIMILAR SOLUTIONS en
dc.subject.other DIFFERENTIAL-EQUATIONS en
dc.subject.other STOCHASTIC SIMULATION en
dc.subject.other RECONSTRUCTION en
dc.subject.other COMPUTATION en
dc.subject.other DIFFUSION en
dc.subject.other SYSTEMS en
dc.title Projective and coarse projective integration for problems with continuous symmetries en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jcp.2006.12.003 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jcp.2006.12.003 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract Temporal integration of equations possessing continuous symmetries (e.g. systems with translational invariance associated with traveling solutions and scale invariance associated with self-similar solutions) in a ""co-evolving"" frame (i.e. a frame which is co-traveling, co-collapsing or co-exploding with the evolving solution) leads to improved accuracy because of the smaller time derivative in the new spatial frame. The slower time behavior permits the use of projective and coarse projective integration with longer projective steps in the computation of the time evolution of partial differential equations and multiscale systems, respectively. These methods are also demonstrated to be effective for systems which only approximately or asymptotically possess continuous symmetries. The ideas of projective integration in a co-evolving frame are illustrated on the one-dimensional, translationally invariant Nagumo partial differential equation (PDE). A corresponding kinetic Monte Carlo model, motivated from the Nagumo kinetics, is used to illustrate the coarse-grained method. A simple, one-dimensional diffusion problem is used to illustrate the scale invariant case. The efficiency of projective integration in the co-evolving frame for both the macroscopic diffusion PDE and for a random-walker particle based model is again demonstrated. © 2007 Elsevier Inc. All rights reserved. en
heal.publisher ACADEMIC PRESS INC ELSEVIER SCIENCE en
heal.journalName Journal of Computational Physics en
dc.identifier.doi 10.1016/j.jcp.2006.12.003 en
dc.identifier.isi ISI:000248854300021 en
dc.identifier.volume 225 en
dc.identifier.issue 1 en
dc.identifier.spage 382 en
dc.identifier.epage 407 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής