dc.contributor.author |
Diamantas, VK |
en |
dc.contributor.author |
Kirytopoulos, KA |
en |
dc.contributor.author |
Leopoulos, VN |
en |
dc.date.accessioned |
2014-03-01T01:26:56Z |
|
dc.date.available |
2014-03-01T01:26:56Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
17460573 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18291 |
|
dc.subject |
Case study |
en |
dc.subject |
MCS |
en |
dc.subject |
Monte Carlo simulation |
en |
dc.subject |
PERT |
en |
dc.subject |
Project management |
en |
dc.subject |
Risk management |
en |
dc.subject |
Scheduling |
en |
dc.title |
Project's duration prediction: Traditional tools or simulation? |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1504/WREMSD.2007.014049 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1504/WREMSD.2007.014049 |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Project schedule development with CPM cannot handle uncertainty, thus PERT and Monte Carlo Simulation (MCS) are the most frequently used methods from best-in-class companies. This study compares the results of the standard MCS with those of PERT and addresses the incorporation of project risk management into the two approaches. It defines the related advantages and disadvantages, found in the literature and is illustrated through a case study. The findings reveal that the modelling of risk is more robust when the MCS is used, leading to the conclusion that simulation is a more efficient tool than the other stochastic methods. Copyright © 2007 Inderscience Enterprises Ltd. |
en |
heal.journalName |
World Review of Entrepreneurship, Management and Sustainable Development |
en |
dc.identifier.doi |
10.1504/WREMSD.2007.014049 |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.issue |
3-4 |
en |
dc.identifier.spage |
317 |
en |
dc.identifier.epage |
333 |
en |