dc.contributor.author |
Chremmos, I |
en |
dc.contributor.author |
Uzunoglu, N |
en |
dc.date.accessioned |
2014-03-01T01:26:56Z |
|
dc.date.available |
2014-03-01T01:26:56Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0003-6935 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18293 |
|
dc.subject.classification |
Optics |
en |
dc.subject.other |
Coupled microring resonators |
en |
dc.subject.other |
Field transfer matrix |
en |
dc.subject.other |
Floquet theorem |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Natural frequencies |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Transfer matrix method |
en |
dc.subject.other |
Wave propagation |
en |
dc.subject.other |
Resonators |
en |
dc.title |
Properties of regular polygons of coupled microring resonators |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1364/AO.46.007730 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1364/AO.46.007730 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
The resonant properties of a closed and symmetric cyclic array of N coupled microring resonators (coupled-microring resonator regular N-gon) are for the first time determined analytically by applying the transfer matrix approach and Floquet theorem for periodic propagation in cylindrically symmetric structures. By solving the corresponding eigenvalue problem with the field amplitudes in the rings as eigenvectors, it is shown that, for even or odd N, this photonic molecule possesses 1 + N/2 or 1 + N resonant frequencies, respectively. The condition for resonances is found to be identical to the familiar dispersion equation of the infinite coupled-microring resonator waveguide with a discrete wave vector. This result reveals the so far latent connection between the two optical structures and is based on the fact that, for a regular polygon, the field transfer matrix over two successive rings is independent of the polygon vertex angle. The properties of the resonant modes are discussed in detail using the illustration of Brillouin band diagrams. Finally, the practical application of a channel-dropping filter based on polygons with an even number of rings is also analyzed. (C) 2007 Optical Society of America. |
en |
heal.publisher |
OPTICAL SOC AMER |
en |
heal.journalName |
Applied Optics |
en |
dc.identifier.doi |
10.1364/AO.46.007730 |
en |
dc.identifier.isi |
ISI:000251354500019 |
en |
dc.identifier.volume |
46 |
en |
dc.identifier.issue |
31 |
en |
dc.identifier.spage |
7730 |
en |
dc.identifier.epage |
7738 |
en |