HEAL DSpace

Quantifying the metabolic capabilities of engineered Zymomonas mobilis using linear programming analysis

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsantili, IC en
dc.contributor.author Karim, MN en
dc.contributor.author Klapa, MI en
dc.date.accessioned 2014-03-01T01:26:57Z
dc.date.available 2014-03-01T01:26:57Z
dc.date.issued 2007 en
dc.identifier.issn 1475-2859 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18306
dc.subject Bacterial Growth en
dc.subject Biomass Production en
dc.subject Cost Efficiency en
dc.subject Energy Source en
dc.subject Genetics en
dc.subject Metabolic Engineering en
dc.subject Metabolic Network en
dc.subject Metabolic Pathway en
dc.subject Redox Potential en
dc.subject Linear Program en
dc.subject.classification Biotechnology & Applied Microbiology en
dc.subject.other alcohol en
dc.subject.other accuracy en
dc.subject.other alcohol production en
dc.subject.other anaerobic metabolism en
dc.subject.other article en
dc.subject.other bacterial cell en
dc.subject.other bacterial growth en
dc.subject.other bacterial metabolism en
dc.subject.other bacterial strain en
dc.subject.other biomass production en
dc.subject.other cell growth en
dc.subject.other controlled study en
dc.subject.other gene deletion en
dc.subject.other in vivo study en
dc.subject.other metabolic engineering en
dc.subject.other nonhuman en
dc.subject.other oxidation reduction potential en
dc.subject.other simulation en
dc.subject.other stoichiometry en
dc.subject.other system analysis en
dc.subject.other Zymomonas mobilis en
dc.subject.other Bacteria (microorganisms) en
dc.subject.other Zymomonas mobilis en
dc.title Quantifying the metabolic capabilities of engineered Zymomonas mobilis using linear programming analysis en
heal.type journalArticle en
heal.identifier.primary 10.1186/1475-2859-6-8 en
heal.identifier.secondary http://dx.doi.org/10.1186/1475-2859-6-8 en
heal.identifier.secondary 8 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract Background: The need for discovery of alternative, renewable, environmentally friendly energy sources and the development of cost-efficient, ""clean"" methods for their conversion into higher fuels becomes imperative. Ethanol, whose significance as fuel has dramatically increased in the last decade, can be produced from hexoses and pentoses through microbial fermentation. Importantly, plant biomass, if appropriately and effectively decomposed, is a potential inexpensive and highly renewable source of the hexose and pentose mixture. Recently, the engineered (to also catabolize pentoses) anaerobic bacterium Zymomonas mobilis has been widely discussed among the most promising microorganisms for the microbial production of ethanol fuel. However, Z. mobilis genome having been fully sequenced in 2005, there is still a small number of published studies of its in vivo physiology and limited use of the metabolic engineering experimental and computational toolboxes to understand its metabolic pathway interconnectivity and regulation towards the optimization of its hexose and pentose fermentation into ethanol. Results: In this paper, we reconstructed the metabolic network of the engineered Z. mobilis to a level that it could be modelled using the metabolic engineering methodologies. We then used linear programming (LP) analysis and identified the Z. mobilis metabolic boundaries with respect to various biological objectives, these boundaries being determined only by Z. mobilis network's stoichiometric connectivity. This study revealed the essential for bacterial growth reactions and elucidated the association between the metabolic pathways, especially regarding main product and byproduct formation. More specifically, the study indicated that ethanol and biomass production depend directly on anaerobic respiration stoichiometry and activity. Thus, enhanced understanding and improved means for analyzing anaerobic respiration and redox potential in vivo are needed to yield further conclusions for potential genetic targets that may lead to optimized Z. mobilis strains. Conclusion: Applying LP to study the Z. mobilis physiology enabled the identification of the main factors influencing the accomplishment of certain biological objectives due to metabolic network connectivity only. This first-level metabolic analysis model forms the basis for the incorporation of more complex regulatory mechanisms and the formation of more realistic models for the accurate simulation of the in vivo Z. mobilis physiology. © 2007 Tsantili et al; licensee BioMed Central Ltd. en
heal.publisher BIOMED CENTRAL LTD en
heal.journalName Microbial Cell Factories en
dc.identifier.doi 10.1186/1475-2859-6-8 en
dc.identifier.isi ISI:000245327800001 en
dc.identifier.volume 6 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής