dc.contributor.author |
Metaxas, D |
en |
dc.date.accessioned |
2014-03-01T01:26:57Z |
|
dc.date.available |
2014-03-01T01:26:57Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
1550-7998 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18308 |
|
dc.subject |
Effective Action |
en |
dc.subject |
Equation of Motion |
en |
dc.subject |
Gauge Field |
en |
dc.subject |
Gauge Theory |
en |
dc.subject |
lagrange multiplier |
en |
dc.subject |
Path Integral |
en |
dc.subject |
Quantum Mechanics |
en |
dc.subject |
Scalar Field |
en |
dc.subject |
Yang Mills |
en |
dc.subject.classification |
Astronomy & Astrophysics |
en |
dc.subject.classification |
Physics, Particles & Fields |
en |
dc.subject.other |
COULOMB GAUGE |
en |
dc.subject.other |
CONFINEMENT |
en |
dc.subject.other |
QCD |
en |
dc.subject.other |
VACUUM |
en |
dc.subject.other |
QUARKS |
en |
dc.title |
Quantum-classical interactions through the path integral |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1103/PhysRevD.75.065023 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1103/PhysRevD.75.065023 |
en |
heal.identifier.secondary |
065023 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
I consider the case of two interacting scalar fields, and ψ, and use the path integral formalism in order to treat the first classically and the second quantum-mechanically. I derive the Feynman rules and the resulting equation of motion for the classical field which should be an improvement of the usual semiclassical procedure. As an application I use this method in order to enforce Gauss's law as a classical equation in a non-Abelian gauge theory. I argue that the theory is renormalizable and equivalent to the usual Yang-Mills theory as far as the gauge field terms are concerned. There are additional terms in the effective action that depend on the Lagrange multiplier field λ that is used to enforce the constraint. These terms and their relation to the confining properties of the theory are discussed. © 2007 The American Physical Society. |
en |
heal.publisher |
AMERICAN PHYSICAL SOC |
en |
heal.journalName |
Physical Review D - Particles, Fields, Gravitation and Cosmology |
en |
dc.identifier.doi |
10.1103/PhysRevD.75.065023 |
en |
dc.identifier.isi |
ISI:000245333600091 |
en |
dc.identifier.volume |
75 |
en |
dc.identifier.issue |
6 |
en |