dc.contributor.author |
Gun'ko, VM |
en |
dc.contributor.author |
Pissis, P |
en |
dc.contributor.author |
Spanoudaki, A |
en |
dc.contributor.author |
Zarko, VI |
en |
dc.contributor.author |
Nychiporuk, YM |
en |
dc.contributor.author |
Andriyko, LS |
en |
dc.contributor.author |
Goncharuk, EV |
en |
dc.contributor.author |
Leboda, R |
en |
dc.contributor.author |
Skubiszewska-Zieba, J |
en |
dc.contributor.author |
Osovskii, VD |
en |
dc.contributor.author |
Ptushinskii, YG |
en |
dc.date.accessioned |
2014-03-01T01:27:02Z |
|
dc.date.available |
2014-03-01T01:27:02Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0021-9797 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18320 |
|
dc.subject |
Broadband dielectric relaxation spectroscopy |
en |
dc.subject |
Infrared spectra |
en |
dc.subject |
PVA adsorption |
en |
dc.subject |
PVA/fumed silica |
en |
dc.subject |
Textural characteristics |
en |
dc.subject |
Thermally stimulated depolarization current |
en |
dc.subject.classification |
Chemistry, Physical |
en |
dc.subject.other |
Adsorption |
en |
dc.subject.other |
Dielectric relaxation |
en |
dc.subject.other |
Hydrogen bonds |
en |
dc.subject.other |
Infrared spectroscopy |
en |
dc.subject.other |
Mass spectrometry |
en |
dc.subject.other |
Silica |
en |
dc.subject.other |
Broadband dielectric relaxation spectroscopy |
en |
dc.subject.other |
PVA adsorption |
en |
dc.subject.other |
PVA/fumed silica |
en |
dc.subject.other |
Textural characteristics |
en |
dc.subject.other |
Thermally stimulated depolarization currents |
en |
dc.subject.other |
Polyvinyl alcohols |
en |
dc.subject.other |
macrogol |
en |
dc.subject.other |
nanoparticle |
en |
dc.subject.other |
polyvinyl alcohol |
en |
dc.subject.other |
silicon dioxide |
en |
dc.subject.other |
water |
en |
dc.subject.other |
adsorption |
en |
dc.subject.other |
article |
en |
dc.subject.other |
chemical interaction |
en |
dc.subject.other |
depolarization |
en |
dc.subject.other |
desorption |
en |
dc.subject.other |
hydrogen bond |
en |
dc.subject.other |
infrared radiation |
en |
dc.subject.other |
infrared spectroscopy |
en |
dc.subject.other |
low temperature |
en |
dc.subject.other |
mass spectrometry |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
spectroscopy |
en |
dc.subject.other |
temperature |
en |
dc.subject.other |
thermal analysis |
en |
dc.subject.other |
thermal stimulation |
en |
dc.subject.other |
Adsorption |
en |
dc.subject.other |
Hydrogen Bonding |
en |
dc.subject.other |
Mass Spectrometry |
en |
dc.subject.other |
Polyvinyl Alcohol |
en |
dc.subject.other |
Silicon Dioxide |
en |
dc.subject.other |
Spectrophotometry, Infrared |
en |
dc.subject.other |
Spectrum Analysis |
en |
dc.subject.other |
Surface Properties |
en |
dc.subject.other |
Temperature |
en |
dc.subject.other |
Water |
en |
dc.title |
Relaxation phenomena in poly(vinyl alcohol)/fumed silica affected by interfacial water |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jcis.2007.03.065 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jcis.2007.03.065 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
interaction of poly(vinyl alcohol) (PVA) with fumed silica was investigated in the gas phase and aqueous media using adsorption, broadband dielectric relaxation spectroscopy (DRS), thermally stimulated depolarization current (TSDC), infrared spectroscopy, thermal analysis, and onepass temperature-programmed desorption (OPTPD) mass-spectrornetry (MS) methods. PVA monolayer formation leads to certain textural changes in the system (after suspension and drying) because of strong hydrogen bonding of the polymer molecules to silica nanoparticles preventing strong interaction between silica particles themselves. This strong interaction promotes associative desorption of water molecules at lower temperatures than in the case of silica alone. Interaction of PVA with silica and residual water leads to depression of glass transition temperature (Tg). There are three types of dipolar relaxations at temperatures lower and higher than the T-g value. A small amount of adsorbed water leads to significant conductivity with elevating temperature. (c) 2007 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Journal of Colloid and Interface Science |
en |
dc.identifier.doi |
10.1016/j.jcis.2007.03.065 |
en |
dc.identifier.isi |
ISI:000247838300004 |
en |
dc.identifier.volume |
312 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
201 |
en |
dc.identifier.epage |
213 |
en |