HEAL DSpace

Robust detection of multiple outliers in grouped multivariate data

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Caroni, C en
dc.contributor.author Billor, N en
dc.date.accessioned 2014-03-01T01:27:05Z
dc.date.available 2014-03-01T01:27:05Z
dc.date.issued 2007 en
dc.identifier.issn 0266-4763 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18331
dc.subject BACON en
dc.subject Cluster analysis en
dc.subject Multivariate data en
dc.subject Outliers en
dc.subject Robust methods en
dc.subject.classification Statistics & Probability en
dc.subject.other COVARIANCE DETERMINANT ESTIMATOR en
dc.subject.other MIXTURE DISTRIBUTION en
dc.title Robust detection of multiple outliers in grouped multivariate data en
heal.type journalArticle en
heal.identifier.primary 10.1080/02664760701592877 en
heal.identifier.secondary http://dx.doi.org/10.1080/02664760701592877 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract Many methods have been developed for detecting multiple outliers in a single multivariate sample, but very few for the case where there may be groups in the data. We propose a method of simultaneously determining groups (as in cluster analysis) and detecting outliers, which are points that are distant from every group. Our method is an adaptation of the BACON algorithm proposed by Billor, Hadi and Velleman for the robust detection of multiple outliers in a single group of multivariate data. There are two versions of our method, depending on whether or not the groups can be assumed to have equal covariance matrices. The effectiveness of the method is illustrated by its application to two real data sets and further shown by a simulation study for different sample sizes and dimensions for 2 and 3 groups, with and without planted outliers in the data. When the number of groups is not known in advance, the algorithm could be used as a robust method of cluster analysis, by running it for various numbers of groups and choosing the best solution. en
heal.publisher ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD en
heal.journalName Journal of Applied Statistics en
dc.identifier.doi 10.1080/02664760701592877 en
dc.identifier.isi ISI:000253264000005 en
dc.identifier.volume 34 en
dc.identifier.issue 10 en
dc.identifier.spage 1241 en
dc.identifier.epage 1250 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής