HEAL DSpace

Robust feature detection for facial expression recognition

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ioannou, S en
dc.contributor.author Caridakis, G en
dc.contributor.author Karpouzis, K en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T01:27:07Z
dc.date.available 2014-03-01T01:27:07Z
dc.date.issued 2007 en
dc.identifier.issn 1687-5176 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18332
dc.subject Facial Expression Recognition en
dc.subject Feature Detection en
dc.subject.other IMAGE SEGMENTATION en
dc.subject.other MOTION ESTIMATION en
dc.subject.other OPTICAL-FLOW en
dc.subject.other FACE en
dc.subject.other MODELS en
dc.subject.other CLASSIFICATION en
dc.subject.other ALGORITHMS en
dc.subject.other EXTRACTION en
dc.subject.other NETWORKS en
dc.subject.other MPEG-4 en
dc.title Robust feature detection for facial expression recognition en
heal.type journalArticle en
heal.identifier.primary 10.1155/2007/29081 en
heal.identifier.secondary 29081 en
heal.identifier.secondary http://dx.doi.org/10.1155/2007/29081 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract This paper presents a robust and adaptable facial feature extraction system used for facial expression recognition in human-computer interaction (HCI) environments. Such environments are usually uncontrolled in terms of lighting and color quality, as well as human expressivity and movement; as a result, using a single feature extraction technique may fail in some parts of a video sequence, while performing well in others. The proposed system is based on a multicue feature extraction and fusion technique, which provides MPEG-4-compatible features assorted with a confidence measure. This confidence measure is used to pinpoint cases where detection of individual features may be wrong and reduce their contribution to the training phase or their importance in deducing the observed facial expression, while the fusion process ensures that the final result regarding the features will be based on the extraction technique that performed better given the particular lighting or color conditions. Real data and results are presented, involving both extreme and intermediate expression/emotional states, obtained within the sensitive artificial listener HCI environment that was generated in the framework of related European projects. Copyright (C) 2007 Spiros Ioannou et al. en
heal.publisher HINDAWI PUBLISHING CORPORATION en
heal.journalName Eurasip Journal on Image and Video Processing en
dc.identifier.doi 10.1155/2007/29081 en
dc.identifier.isi ISI:000207756800001 en
dc.identifier.volume 2007 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής