HEAL DSpace

Semantic image segmentation and object labeling

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Athanasiadis, T en
dc.contributor.author Mylonas, P en
dc.contributor.author Avrithis, Y en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T01:27:14Z
dc.date.available 2014-03-01T01:27:14Z
dc.date.issued 2007 en
dc.identifier.issn 1051-8215 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18355
dc.subject Fuzzy region labeling en
dc.subject Semantic region growing en
dc.subject Semantic segmentation en
dc.subject Visual context en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Fuzzy region labeling en
dc.subject.other Image annotation en
dc.subject.other Semantic region growing en
dc.subject.other Semantic segmentation en
dc.subject.other Visual context en
dc.subject.other Algebra en
dc.subject.other Algorithms en
dc.subject.other Fuzzy sets en
dc.subject.other Multimedia services en
dc.subject.other Ontology en
dc.subject.other Recursive functions en
dc.subject.other Semantics en
dc.subject.other Vision en
dc.subject.other Image segmentation en
dc.title Semantic image segmentation and object labeling en
heal.type journalArticle en
heal.identifier.primary 10.1109/TCSVT.2007.890636 en
heal.identifier.secondary http://dx.doi.org/10.1109/TCSVT.2007.890636 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract In this paper, we present a framework for simultaneous image segmentation and object labeling leading to automatic image annotation. Focusing on semantic analysis of images, it contributes to knowledge-assisted multimedia analysis and bridging the gap between semantics and low level visual features. The proposed framework operates at semantic level using possible semantic labels, formally represented as fuzzy sets, to make decisions on handling image regions instead of visual features used traditionally. In order to stress its independence of a specific image segmentation approach we have modified two well known region growing algorithms, i.e., watershed and recursive shortest spanning tree, and compared them to their traditional counterparts. Additionally, a visual context representation and analysis approach is presented, blending global knowledge in interpreting each object locally. Contextual information is based on a novel semantic processing methodology, employing fuzzy algebra and ontological taxonomic knowledge representation. In this process, utilization of contextual knowledge re-adjusts labeling results of semantic region growing, by means of fine-tuning membership degrees of detected concepts. The performance of the overall methodology is evaluated on a real-life still image dataset from two popular domains. © 2007 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Circuits and Systems for Video Technology en
dc.identifier.doi 10.1109/TCSVT.2007.890636 en
dc.identifier.isi ISI:000245227000005 en
dc.identifier.volume 17 en
dc.identifier.issue 3 en
dc.identifier.spage 298 en
dc.identifier.epage 311 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής