dc.contributor.author |
Athanasiadis, T |
en |
dc.contributor.author |
Mylonas, P |
en |
dc.contributor.author |
Avrithis, Y |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T01:27:14Z |
|
dc.date.available |
2014-03-01T01:27:14Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
1051-8215 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18355 |
|
dc.subject |
Fuzzy region labeling |
en |
dc.subject |
Semantic region growing |
en |
dc.subject |
Semantic segmentation |
en |
dc.subject |
Visual context |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Fuzzy region labeling |
en |
dc.subject.other |
Image annotation |
en |
dc.subject.other |
Semantic region growing |
en |
dc.subject.other |
Semantic segmentation |
en |
dc.subject.other |
Visual context |
en |
dc.subject.other |
Algebra |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Multimedia services |
en |
dc.subject.other |
Ontology |
en |
dc.subject.other |
Recursive functions |
en |
dc.subject.other |
Semantics |
en |
dc.subject.other |
Vision |
en |
dc.subject.other |
Image segmentation |
en |
dc.title |
Semantic image segmentation and object labeling |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TCSVT.2007.890636 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TCSVT.2007.890636 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
In this paper, we present a framework for simultaneous image segmentation and object labeling leading to automatic image annotation. Focusing on semantic analysis of images, it contributes to knowledge-assisted multimedia analysis and bridging the gap between semantics and low level visual features. The proposed framework operates at semantic level using possible semantic labels, formally represented as fuzzy sets, to make decisions on handling image regions instead of visual features used traditionally. In order to stress its independence of a specific image segmentation approach we have modified two well known region growing algorithms, i.e., watershed and recursive shortest spanning tree, and compared them to their traditional counterparts. Additionally, a visual context representation and analysis approach is presented, blending global knowledge in interpreting each object locally. Contextual information is based on a novel semantic processing methodology, employing fuzzy algebra and ontological taxonomic knowledge representation. In this process, utilization of contextual knowledge re-adjusts labeling results of semantic region growing, by means of fine-tuning membership degrees of detected concepts. The performance of the overall methodology is evaluated on a real-life still image dataset from two popular domains. © 2007 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Circuits and Systems for Video Technology |
en |
dc.identifier.doi |
10.1109/TCSVT.2007.890636 |
en |
dc.identifier.isi |
ISI:000245227000005 |
en |
dc.identifier.volume |
17 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
298 |
en |
dc.identifier.epage |
311 |
en |