dc.contributor.author |
Polychronopoulos, A |
en |
dc.contributor.author |
Tsogas, M |
en |
dc.contributor.author |
Amditis, AJ |
en |
dc.contributor.author |
Andreone, L |
en |
dc.date.accessioned |
2014-03-01T01:27:15Z |
|
dc.date.available |
2014-03-01T01:27:15Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
1524-9050 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18358 |
|
dc.subject |
Collision warning (CW) |
en |
dc.subject |
Curvilinear motion model |
en |
dc.subject |
Kalman |
en |
dc.subject |
Path prediction |
en |
dc.subject |
Sensor fusion |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.classification |
Transportation Science & Technology |
en |
dc.subject.other |
Accident prevention |
en |
dc.subject.other |
Kalman filters |
en |
dc.subject.other |
Real time systems |
en |
dc.subject.other |
Traffic control |
en |
dc.subject.other |
Collision warning (CW) |
en |
dc.subject.other |
Curvilinear motion models |
en |
dc.subject.other |
Path prediction |
en |
dc.subject.other |
Vision enhancement applications |
en |
dc.subject.other |
Sensor data fusion |
en |
dc.title |
Sensor fusion for predicting vehicles' path for collision avoidance systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TITS.2007.903439 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TITS.2007.903439 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Path prediction is the only way that an active safety system can predict a driver's intention. In this paper, a model-based description of the traffic environment is presented-both vehicles and infrastructure-in order to provide, in real time, sufficient information for an accurate prediction of the egovehicle's path. The proposed approach is a hierarchical-structured algorithm that fuses traffic environment data with car dynamics in order to accurately predict the trajectory of the ego-vehicle, allowing the active safety system to inform, warn the driver, or intervene when critical situations occur. The algorithms are tested with real data, under normal conditions, for collision warning (CW) and vision-enhancement applications. The results clearly show that this approach allows a dynamic situation and threat assessment and can enhance the capabilities of adaptive cruise control and CW functions by reducing the false alarm rate. © 2007 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Intelligent Transportation Systems |
en |
dc.identifier.doi |
10.1109/TITS.2007.903439 |
en |
dc.identifier.isi |
ISI:000249403800016 |
en |
dc.identifier.volume |
8 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
549 |
en |
dc.identifier.epage |
562 |
en |