dc.contributor.author |
Hu, S |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:27:16Z |
|
dc.date.available |
2014-03-01T01:27:16Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0026-9255 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18372 |
|
dc.subject |
First and second eigenvalues of the p-Laplacian |
en |
dc.subject |
Linking sets |
en |
dc.subject |
Local linking condition |
en |
dc.subject |
Locally Lipschitz potential |
en |
dc.subject |
Nonsmooth C and PS-conditions |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
DEGENERATE ELLIPTIC-EQUATIONS |
en |
dc.subject.other |
CRITICAL-POINTS |
en |
dc.subject.other |
EXISTENCE |
en |
dc.subject.other |
PERTURBATIONS |
en |
dc.subject.other |
LINKING |
en |
dc.title |
Solutions and multiple solutions for problems with the p-Laplacian |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00605-006-0432-6 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00605-006-0432-6 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
In this paper we consider two nonlinear elliptic problems driven by the p-Laplacian and having a nonsmooth potential (hemivariational inequalities). The first is an eigenvalue problem and we prove that if the parameter λ < λ2 = the second eigenvalue of the p-Laplacian, then there exists a nontrivial smooth solution. The second problem is resonant both near zero and near infinity for the principal eigenvalue of the p-Laplacian. For this problem we prove a multiplicity result. Our approach is variational based on the nonsmooth critical point theory. © Springer-Verlag 2007. |
en |
heal.publisher |
SPRINGER WIEN |
en |
heal.journalName |
Monatshefte fur Mathematik |
en |
dc.identifier.doi |
10.1007/s00605-006-0432-6 |
en |
dc.identifier.isi |
ISI:000245175500004 |
en |
dc.identifier.volume |
150 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
309 |
en |
dc.identifier.epage |
326 |
en |