HEAL DSpace

Spatio-temporal short-term urban traffic volume forecasting using genetically optimized modular networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vlahogianni, EI en
dc.contributor.author Karlaftis, MG en
dc.contributor.author Golias, JC en
dc.date.accessioned 2014-03-01T01:27:16Z
dc.date.available 2014-03-01T01:27:16Z
dc.date.issued 2007 en
dc.identifier.issn 1093-9687 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18374
dc.subject Genetics en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Construction & Building Technology en
dc.subject.classification Engineering, Civil en
dc.subject.other Forecasting en
dc.subject.other Genetic algorithms en
dc.subject.other Multilayer neural networks en
dc.subject.other Optimization en
dc.subject.other Statistical methods en
dc.subject.other Genetically optimized modular networks en
dc.subject.other Modular neural predictor en
dc.subject.other Highway traffic control en
dc.subject.other Forecasting en
dc.subject.other Genetic algorithms en
dc.subject.other Highway traffic control en
dc.subject.other Multilayer neural networks en
dc.subject.other Optimization en
dc.subject.other Statistical methods en
dc.subject.other forecasting method en
dc.subject.other methodology en
dc.subject.other optimization en
dc.subject.other spatiotemporal analysis en
dc.title Spatio-temporal short-term urban traffic volume forecasting using genetically optimized modular networks en
heal.type journalArticle en
heal.identifier.primary 10.1111/j.1467-8667.2007.00488.x en
heal.identifier.secondary http://dx.doi.org/10.1111/j.1467-8667.2007.00488.x en
heal.language English en
heal.publicationDate 2007 en
heal.abstract Current interest in short-term traffic volume forecasting focuses on incorporating temporal and spatial volume characteristics in the forecasting process. This article addresses the problem of integrating and optimizing predictive information from multiple locations of an urban signalized arterial and proposes a modular neural predictor consisting of temporal genetically optimized structures of multilayer perceptrons (MLP) that are fed with volume data from sequential locations to improve the accuracy of short-term forecasts. The results show that the proposed methodology provides more accurate forecasts compared to the conventional statistical methodologies applied, as well as to the static forms of neural networks. © 2007 Computer-Aided Civil and Infrastructure Engineering. en
heal.publisher BLACKWELL PUBLISHING en
heal.journalName Computer-Aided Civil and Infrastructure Engineering en
dc.identifier.doi 10.1111/j.1467-8667.2007.00488.x en
dc.identifier.isi ISI:000246433400001 en
dc.identifier.volume 22 en
dc.identifier.issue 5 en
dc.identifier.spage 317 en
dc.identifier.epage 325 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής