HEAL DSpace

Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 1:Theory

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lee, YS en
dc.contributor.author Vakakis, AF en
dc.contributor.author Bergman, LA en
dc.contributor.author McFarland, DM en
dc.contributor.author Kerschen, G en
dc.date.accessioned 2014-03-01T01:27:21Z
dc.date.available 2014-03-01T01:27:21Z
dc.date.issued 2007 en
dc.identifier.issn 0001-1452 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18411
dc.subject.classification Engineering, Aerospace en
dc.subject.other Aeroelastic instability en
dc.subject.other Complexification en
dc.subject.other Nonlinear energy sink (NES) en
dc.subject.other Resonant interactions en
dc.subject.other Bifurcation (mathematics) en
dc.subject.other Energy transfer en
dc.subject.other Numerical methods en
dc.subject.other System stability en
dc.subject.other Wings en
dc.subject.other Aerodynamics en
dc.title Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 1:Theory en
heal.type journalArticle en
heal.identifier.primary 10.2514/1.24062 en
heal.identifier.secondary http://dx.doi.org/10.2514/1.24062 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract We study passive and nonlinear targeted energy transfers induced by resonant interactions between a single-degree-of-freedom nonlinear energy sink (NES) and a 2-DOF in-flow rigid wing model. We show that it is feasible to partially or even completely suppress aeroelastic instability by passively transferring vibration energy from the wing to the NES in a one-way irreversible fashion. Moreover, this instability suppression is performed by partially or completely eliminating its triggering mechanism. Numerical parametric studies identify three main mechanisms for suppressing aeroelastic instability: recurring burstout and suppression, intermediate suppression, and complete elimination. We investigate these mechanisms both numerically by the Hilbert-Huang transform and analytically by a complexification-averaging technique. Each suppression mechanism involves strong 1:1 resonance capture during which the NES absorbs and dissipates a significant portion of energy fed from the flow to the wing. Failure of suppression is associated with restoring the underlying triggering mechanism of instability, which is a series of superharmonic resonance captures followed by escapes from resonance. Finally, using a numerical continuation technique, we perform a bifurcation analysis to examine sensitive dependence on initial conditions and thus robustness of instability suppression. Copyright © 2006 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. en
heal.publisher AMER INST AERONAUT ASTRONAUT en
heal.journalName AIAA Journal en
dc.identifier.doi 10.2514/1.24062 en
dc.identifier.isi ISI:000244827300019 en
dc.identifier.volume 45 en
dc.identifier.issue 3 en
dc.identifier.spage 693 en
dc.identifier.epage 711 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής