dc.contributor.author |
Lee, YS |
en |
dc.contributor.author |
Vakakis, AF |
en |
dc.contributor.author |
Bergman, LA |
en |
dc.contributor.author |
McFarland, DM |
en |
dc.contributor.author |
Kerschen, G |
en |
dc.date.accessioned |
2014-03-01T01:27:21Z |
|
dc.date.available |
2014-03-01T01:27:21Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0001-1452 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18411 |
|
dc.subject.classification |
Engineering, Aerospace |
en |
dc.subject.other |
Aeroelastic instability |
en |
dc.subject.other |
Complexification |
en |
dc.subject.other |
Nonlinear energy sink (NES) |
en |
dc.subject.other |
Resonant interactions |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.subject.other |
Energy transfer |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
System stability |
en |
dc.subject.other |
Wings |
en |
dc.subject.other |
Aerodynamics |
en |
dc.title |
Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 1:Theory |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.2514/1.24062 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.2514/1.24062 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
We study passive and nonlinear targeted energy transfers induced by resonant interactions between a single-degree-of-freedom nonlinear energy sink (NES) and a 2-DOF in-flow rigid wing model. We show that it is feasible to partially or even completely suppress aeroelastic instability by passively transferring vibration energy from the wing to the NES in a one-way irreversible fashion. Moreover, this instability suppression is performed by partially or completely eliminating its triggering mechanism. Numerical parametric studies identify three main mechanisms for suppressing aeroelastic instability: recurring burstout and suppression, intermediate suppression, and complete elimination. We investigate these mechanisms both numerically by the Hilbert-Huang transform and analytically by a complexification-averaging technique. Each suppression mechanism involves strong 1:1 resonance capture during which the NES absorbs and dissipates a significant portion of energy fed from the flow to the wing. Failure of suppression is associated with restoring the underlying triggering mechanism of instability, which is a series of superharmonic resonance captures followed by escapes from resonance. Finally, using a numerical continuation technique, we perform a bifurcation analysis to examine sensitive dependence on initial conditions and thus robustness of instability suppression. Copyright © 2006 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. |
en |
heal.publisher |
AMER INST AERONAUT ASTRONAUT |
en |
heal.journalName |
AIAA Journal |
en |
dc.identifier.doi |
10.2514/1.24062 |
en |
dc.identifier.isi |
ISI:000244827300019 |
en |
dc.identifier.volume |
45 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
693 |
en |
dc.identifier.epage |
711 |
en |