dc.contributor.author |
Karayannis, VG |
en |
dc.contributor.author |
Moutsatsou, AK |
en |
dc.date.accessioned |
2014-03-01T01:27:23Z |
|
dc.date.available |
2014-03-01T01:27:23Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0955-2219 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18427 |
|
dc.subject |
Al2O3 |
en |
dc.subject |
Composites |
en |
dc.subject |
Microstructure-final |
en |
dc.subject |
Powders-chemical preparation |
en |
dc.subject |
Scrap |
en |
dc.subject.classification |
Materials Science, Ceramics |
en |
dc.subject.other |
Agglomeration |
en |
dc.subject.other |
Alumina |
en |
dc.subject.other |
Hardness |
en |
dc.subject.other |
Microstructure |
en |
dc.subject.other |
Physical properties |
en |
dc.subject.other |
Porosity |
en |
dc.subject.other |
Stiffness |
en |
dc.subject.other |
Strength of materials |
en |
dc.subject.other |
Metallic waste |
en |
dc.subject.other |
Powders-chemical preparation |
en |
dc.subject.other |
Residual porosity |
en |
dc.subject.other |
Cermets |
en |
dc.subject.other |
Agglomeration |
en |
dc.subject.other |
Alumina |
en |
dc.subject.other |
Cermets |
en |
dc.subject.other |
Hardness |
en |
dc.subject.other |
Microstructure |
en |
dc.subject.other |
Physical properties |
en |
dc.subject.other |
Porosity |
en |
dc.subject.other |
Stiffness |
en |
dc.subject.other |
Strength of materials |
en |
dc.title |
The contribution of waste in the construction of composite materials |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jeurceramsoc.2006.04.166 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jeurceramsoc.2006.04.166 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
(3Ni + Fe)-Al2O3 and Ni3Fe-Al2O3 composites were constructed using Ni, Fe and Ni3Fe powders (mu m), recovered from metallic waste (ferrous scrap) by a hydrometallurgical process, along with a 0-35 wt.% of commercial alpha-Al2O3 powder (0-55 vol.% theoretically). Established PM fabrication processes were applied. The successfully prepared metal-ceramics were characterized, and measurements of their physico-mechanical properties were conducted. The composite microstructures exhibit a residual porosity varying with the percent ceramic content and influenced by a certain degree of agglomeration revealed in the ceramic phase as well as by use of fabrication additives. When increasing percent ceramic amount, the composite materials become lighter, harder, stiffer and slightly stronger, while remaining conductive, although their electrical resistivity increases. Due to differences in matrix composition, Ni3Fe-Al2O3 composites prevail over the (3Ni + Fe)-Al2O3 ones in hardness, and slightly in stiffness and strength, at each percent ceramic content. (c) 2006 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Journal of the European Ceramic Society |
en |
dc.identifier.doi |
10.1016/j.jeurceramsoc.2006.04.166 |
en |
dc.identifier.isi |
ISI:000243265100074 |
en |
dc.identifier.volume |
27 |
en |
dc.identifier.issue |
2-3 |
en |
dc.identifier.spage |
843 |
en |
dc.identifier.epage |
849 |
en |