dc.contributor.author |
Charalambopoulos, A |
en |
dc.contributor.author |
Kirsch, A |
en |
dc.contributor.author |
Anagnostopoulos, KA |
en |
dc.contributor.author |
Gintides, D |
en |
dc.contributor.author |
Kiriaki, K |
en |
dc.date.accessioned |
2014-03-01T01:27:25Z |
|
dc.date.available |
2014-03-01T01:27:25Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0266-5611 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18440 |
|
dc.subject |
Elastic Scattering |
en |
dc.subject |
Factorization Method |
en |
dc.subject |
Plane Waves |
en |
dc.subject |
Point of View |
en |
dc.subject |
Rigid Body |
en |
dc.subject |
Shape Reconstruction |
en |
dc.subject |
Theoretical Framework |
en |
dc.subject |
Transmission Problem |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Physics, Mathematical |
en |
dc.subject.other |
Elastohydrodynamics |
en |
dc.subject.other |
Harmonic analysis |
en |
dc.subject.other |
Inverse problems |
en |
dc.subject.other |
Wave equations |
en |
dc.subject.other |
Wave transmission |
en |
dc.subject.other |
Factorization method |
en |
dc.subject.other |
Inverse elastic scattering |
en |
dc.subject.other |
Inverse transmission |
en |
dc.subject.other |
Shape reconstruction |
en |
dc.subject.other |
Elastic scattering |
en |
dc.title |
The factorization method in inverse elastic scattering from penetrable bodies |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0266-5611/23/1/002 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0266-5611/23/1/002 |
en |
heal.identifier.secondary |
002 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
The present work is concerned with the extension of the factorization method to the inverse elastic scattering problem by penetrable isotropic bodies embedded in an isotropic host environment for time-harmonic plane wave incidence. Although the former method has been successfully employed for the shape reconstruction problem in the field of elastodynamic scattering by rigid bodies or cavities, no corresponding results have been recorded, so far, for the very interesting (both from a theoretical and a practical point of view) case of isotropic elastic inclusions. This paper aims at closing this gap by developing the theoretical framework which is necessary for the application of the factorization method to the inverse transmission problem in elastodynamics. As in the previous works referring to the particular reconstruction method, the main outcome is the construction of a binary criterion which determines whether a given point is inside or outside the scattering obstacle by using only the spectral data of the far-field operator. © 2007 IOP Publishing Ltd. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Inverse Problems |
en |
dc.identifier.doi |
10.1088/0266-5611/23/1/002 |
en |
dc.identifier.isi |
ISI:000244177100002 |
en |
dc.identifier.volume |
23 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
27 |
en |
dc.identifier.epage |
51 |
en |