HEAL DSpace

The plane self-similar anisotropic and angularly inhomogeneous wedge under power law tractions and the asymptotic analysis of the stress field

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stampouloglou, IH en
dc.contributor.author Theotokoglou, EE en
dc.date.accessioned 2014-03-01T01:27:26Z
dc.date.available 2014-03-01T01:27:26Z
dc.date.issued 2007 en
dc.identifier.issn 0997-7538 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18449
dc.subject Angularly inhomogeneous en
dc.subject Anisotropic en
dc.subject Asymptotic analysis en
dc.subject Isotropic en
dc.subject Ordinary differential equation en
dc.subject Plane linear elasticity en
dc.subject Power law tractions en
dc.subject Wedge en
dc.subject.classification Mechanics en
dc.subject.other Anisotropy en
dc.subject.other Asymptotic stability en
dc.subject.other Elastic moduli en
dc.subject.other Ordinary differential equations en
dc.subject.other Stress analysis en
dc.subject.other Angularly inhomogeneous en
dc.subject.other Anisotropic en
dc.subject.other Isotropic en
dc.subject.other Plane linear elasticity en
dc.subject.other Power law tractions en
dc.subject.other Wedges en
dc.subject.other Traction (friction) en
dc.title The plane self-similar anisotropic and angularly inhomogeneous wedge under power law tractions and the asymptotic analysis of the stress field en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.euromechsol.2006.02.001 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.euromechsol.2006.02.001 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract In this study the generally anisotropic and angularly inhomogeneous wedge, under power law tractions of order n of the radial coordinate r at its external faces is considered. At first, using variable separable relations in the equilibrium equations, the strain-stress relations and the strain compatibility equation, a differential system of equations is constructed and investigated. Decoupling this system, an ordinary differential equation is derived and the stress and displacement fields may be determined. The proposed procedure is also applied to the elastostatic problem of an isotropic and angularly inhomogeneous wedge. In the sequel William's asymptotic analysis in the case of angular inhomogeneity is examined. Finally, applications for the case of an angularly inhomogeneous wedge-shape dam and for the asymptotic procedure in an isotropic wedge with angularly varying shear modulus, are made. (c) 2006 Elsevier Masson SAS. All rights reserved. en
heal.publisher GAUTHIER-VILLARS/EDITIONS ELSEVIER en
heal.journalName European Journal of Mechanics, A/Solids en
dc.identifier.doi 10.1016/j.euromechsol.2006.02.001 en
dc.identifier.isi ISI:000243438600004 en
dc.identifier.volume 26 en
dc.identifier.issue 1 en
dc.identifier.spage 55 en
dc.identifier.epage 67 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής