dc.contributor.author |
Redouani, A |
en |
dc.contributor.author |
Elqorachi, E |
en |
dc.contributor.author |
Rassias, TM |
en |
dc.date.accessioned |
2014-03-01T01:27:27Z |
|
dc.date.available |
2014-03-01T01:27:27Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
00019054 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18452 |
|
dc.subject |
D'Alembert's equation |
en |
dc.subject |
Step 2 nilpotent groups |
en |
dc.subject |
Superstability |
en |
dc.title |
The superstability of d'Alembert's functional equation on step 2 nilpotent groups |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00010-007-2902-x |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00010-007-2902-x |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Summary. In the present paper we study the superstability of d’Alembert’s functional equations $$f(xy) +f(xy^{-1}) = 2f(x)f(y), x, y \in G, $$ and $$f(xy) + f(yx) + f(xy^{-1}) +f(y^{-1}x) = 4f(x)f(y), x, y \in G, $$ on any step 2 nilpotent group G. |
en |
heal.journalName |
Aequationes Mathematicae |
en |
dc.identifier.doi |
10.1007/s00010-007-2902-x |
en |
dc.identifier.volume |
74 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
226 |
en |
dc.identifier.epage |
241 |
en |