HEAL DSpace

Theoretical analysis of a class of mixed, C0 continuity formulations for general dipolar Gradient Elasticity boundary value problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Markolefas, SI en
dc.contributor.author Tsouvalas, DA en
dc.contributor.author Tsamasphyros, GI en
dc.date.accessioned 2014-03-01T01:27:27Z
dc.date.available 2014-03-01T01:27:27Z
dc.date.issued 2007 en
dc.identifier.issn 0020-7683 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18455
dc.subject Ciarlet-Raviart method en
dc.subject Dipolar gradient elasticity en
dc.subject Inf-sup conditions en
dc.subject Mixed finite elements en
dc.subject Mixed formulations en
dc.subject.classification Mechanics en
dc.subject.other Elasticity en
dc.subject.other Finite element method en
dc.subject.other Gradient methods en
dc.subject.other Problem solving en
dc.subject.other Tensors en
dc.subject.other Ciarlet Raviart method en
dc.subject.other Dipolar gradient elasticity en
dc.subject.other Inf sup conditions en
dc.subject.other Mixed finite elements en
dc.subject.other Mixed formulations en
dc.subject.other Boundary value problems en
dc.title Theoretical analysis of a class of mixed, C0 continuity formulations for general dipolar Gradient Elasticity boundary value problems en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijsolstr.2006.04.037 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijsolstr.2006.04.037 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract Mixed weak formulations, with two or three main (tensor) variables, are stated and theoretically analyzed for general multi-dimensional dipolar Gradient Elasticity (biharmonic) boundary value problems. The general structure of constitutive equations is considered (with and without coupling terms). The mixed formulations are based on various generalizations of the so-called Ciarlet-Raviart technique. Hence, C-0 continuity conforming basis functions may be employed in the finite element approximations (or even, C-1 basis functions for the Cauchy stress variable). All the complicated boundary conditions, especially in the multi-dimensional scenario, are naturally considered. The main variables are the displacement vector, the double stress tensor and the Cauchy stress tensor. The latter variable may be eliminated in some of the formulations, depending on the structure of the constitutive equations. The standard continuous and discrete Babuska-Brezzi inf-sup conditions for the constraint equation, as well as, solution uniqueness for both the continuous statements and discrete approximations, are established in all cases. For the purpose of completeness, two one-dimensional mixed formulations are also analyzed. The respective constitutive equations possess general structure (with coupling terms). For the 1-D formulations, all the inf-sup conditions are satisfied, for both the continuous and discrete statements (assuming proper selection of the polynomial spaces for the main variables). Hence, the general Babuska-Brezzi theory results in quasi-optimality and stability. For multi-dimensional problems, the difficulty of deducing the inf-sup condition on the kernel is examined. Certain aspects of methodologies employed to theoretically by-pass this problem, are also discussed. (c) 2006 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Solids and Structures en
dc.identifier.doi 10.1016/j.ijsolstr.2006.04.037 en
dc.identifier.isi ISI:000243145300011 en
dc.identifier.volume 44 en
dc.identifier.issue 2 en
dc.identifier.spage 546 en
dc.identifier.epage 572 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής