dc.contributor.author |
Markolefas, SI |
en |
dc.contributor.author |
Tsouvalas, DA |
en |
dc.contributor.author |
Tsamasphyros, GI |
en |
dc.date.accessioned |
2014-03-01T01:27:27Z |
|
dc.date.available |
2014-03-01T01:27:27Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0020-7683 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18455 |
|
dc.subject |
Ciarlet-Raviart method |
en |
dc.subject |
Dipolar gradient elasticity |
en |
dc.subject |
Inf-sup conditions |
en |
dc.subject |
Mixed finite elements |
en |
dc.subject |
Mixed formulations |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Elasticity |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Gradient methods |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Tensors |
en |
dc.subject.other |
Ciarlet Raviart method |
en |
dc.subject.other |
Dipolar gradient elasticity |
en |
dc.subject.other |
Inf sup conditions |
en |
dc.subject.other |
Mixed finite elements |
en |
dc.subject.other |
Mixed formulations |
en |
dc.subject.other |
Boundary value problems |
en |
dc.title |
Theoretical analysis of a class of mixed, C0 continuity formulations for general dipolar Gradient Elasticity boundary value problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ijsolstr.2006.04.037 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ijsolstr.2006.04.037 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Mixed weak formulations, with two or three main (tensor) variables, are stated and theoretically analyzed for general multi-dimensional dipolar Gradient Elasticity (biharmonic) boundary value problems. The general structure of constitutive equations is considered (with and without coupling terms). The mixed formulations are based on various generalizations of the so-called Ciarlet-Raviart technique. Hence, C-0 continuity conforming basis functions may be employed in the finite element approximations (or even, C-1 basis functions for the Cauchy stress variable). All the complicated boundary conditions, especially in the multi-dimensional scenario, are naturally considered. The main variables are the displacement vector, the double stress tensor and the Cauchy stress tensor. The latter variable may be eliminated in some of the formulations, depending on the structure of the constitutive equations. The standard continuous and discrete Babuska-Brezzi inf-sup conditions for the constraint equation, as well as, solution uniqueness for both the continuous statements and discrete approximations, are established in all cases. For the purpose of completeness, two one-dimensional mixed formulations are also analyzed. The respective constitutive equations possess general structure (with coupling terms). For the 1-D formulations, all the inf-sup conditions are satisfied, for both the continuous and discrete statements (assuming proper selection of the polynomial spaces for the main variables). Hence, the general Babuska-Brezzi theory results in quasi-optimality and stability. For multi-dimensional problems, the difficulty of deducing the inf-sup condition on the kernel is examined. Certain aspects of methodologies employed to theoretically by-pass this problem, are also discussed. (c) 2006 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Solids and Structures |
en |
dc.identifier.doi |
10.1016/j.ijsolstr.2006.04.037 |
en |
dc.identifier.isi |
ISI:000243145300011 |
en |
dc.identifier.volume |
44 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
546 |
en |
dc.identifier.epage |
572 |
en |