HEAL DSpace

Time-dependent formation of the profile of the He 2s2p Po1 state excited by a short laser pulse

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Mercouris, Th en
dc.contributor.author Komninos, Y en
dc.contributor.author Nicolaides, CA en
dc.date.accessioned 2014-03-01T01:27:29Z
dc.date.available 2014-03-01T01:27:29Z
dc.date.issued 2007 en
dc.identifier.issn 1050-2947 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18468
dc.subject.classification Optics en
dc.subject.classification Physics, Atomic, Molecular & Chemical en
dc.subject.other Crystal atomic structure en
dc.subject.other Electric excitation en
dc.subject.other Helium en
dc.subject.other Ionization en
dc.subject.other Codling en
dc.subject.other Differential ionization probability en
dc.subject.other Fano asymmetry parameter en
dc.subject.other Photoabsorption measurements en
dc.subject.other Ultrashort pulses en
dc.title Time-dependent formation of the profile of the He 2s2p Po1 state excited by a short laser pulse en
heal.type journalArticle en
heal.identifier.primary 10.1103/PhysRevA.75.013407 en
heal.identifier.secondary http://dx.doi.org/10.1103/PhysRevA.75.013407 en
heal.identifier.secondary 013407 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract We produce quantitatively accurate data for the energy- and time-dependent formation of the profile of the differential ionization probability of the He 1 s2 S1 ground state from the coherent excitation and decay of the doubly excited He 2s2p Po1 resonance state induced by a pulse of duration of 450 a.u. and field strength in the range F=0.4× 10-3 a.u. to F=0.4× 10-1 a.u. Two general methods were applied. One is analytic, using Fano's configuration interaction in the continuum in the framework of first order time-dependent perturbation theory. The other is numerical, using the state-specific expansion approach for the nonperturbative solution of the time-dependent Schrödinger equation. Electronic structures and electron correlation are incorporated via the use of state-specific wave functions for the initial state, the resonance state, and the continuum of scattering states. The results from the two methods are in perfect agreement, with a small discrepancy starting at F=0.4× 10-1 a.u. The weak field analytic formulas show explicitly the dependence of the profile formation on the pulse characteristics. In the limit of large times, the system becomes stationary and the computed resonance state profile yields the Fano asymmetry parameter of q=-2.8, with energy Er =60.20 eV and width Γ=0.038 eV. These values agree with previously published ones obtained from time-independent calculations and from photoabsorption measurements of the type initiated by Madden and Codling in 1963. © 2007 The American Physical Society. en
heal.publisher AMERICAN PHYSICAL SOC en
heal.journalName Physical Review A - Atomic, Molecular, and Optical Physics en
dc.identifier.doi 10.1103/PhysRevA.75.013407 en
dc.identifier.isi ISI:000243894100109 en
dc.identifier.volume 75 en
dc.identifier.issue 1 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record