dc.contributor.author |
Peeters, AG |
en |
dc.contributor.author |
Angioni, C |
en |
dc.contributor.author |
Strintzi, D |
en |
dc.date.accessioned |
2014-03-01T01:27:29Z |
|
dc.date.available |
2014-03-01T01:27:29Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0031-9007 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18471 |
|
dc.subject |
Electric Field |
en |
dc.subject |
Flow Velocity |
en |
dc.subject |
Fluid Model |
en |
dc.subject |
Kinetics |
en |
dc.subject |
Magnetic Field |
en |
dc.subject |
Transport Phenomena |
en |
dc.subject |
Velocity Profile |
en |
dc.subject |
Angular Momentum |
en |
dc.subject |
Ion Temperature Gradient |
en |
dc.subject |
Neutral Beam |
en |
dc.subject |
Resistive Wall Mode |
en |
dc.subject.classification |
Physics, Multidisciplinary |
en |
dc.subject.other |
Flow velocity |
en |
dc.subject.other |
Gradient methods |
en |
dc.subject.other |
Perturbation techniques |
en |
dc.subject.other |
Coriolis drift |
en |
dc.subject.other |
Fluid models |
en |
dc.subject.other |
Toroidal momentum |
en |
dc.subject.other |
Toroidal plasmas |
en |
dc.subject.other |
Plasmas |
en |
dc.title |
Toroidal momentum pinch velocity due to the coriolis drift effect on small scale instabilities in a toroidal plasma |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1103/PhysRevLett.98.265003 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1103/PhysRevLett.98.265003 |
en |
heal.identifier.secondary |
265003 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
In this Letter, the influence of the ""Coriolis drift"" on small scale instabilities in toroidal plasmas is shown to generate a toroidal momentum pinch velocity. Such a pinch results because the Coriolis drift generates a coupling between the density and temperature perturbations on the one hand and the perturbed parallel flow velocity on the other. A simple fluid model is used to highlight the physics mechanism and gyro-kinetic calculations are performed to accurately assess the magnitude of the pinch. The derived pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torque on the plasma and is predicted to generate a peaking of the toroidal velocity profile similar to the peaking of the density profile. Finally, the pinch also affects the interpretation of current experiments. © 2007 The American Physical Society. |
en |
heal.publisher |
AMERICAN PHYSICAL SOC |
en |
heal.journalName |
Physical Review Letters |
en |
dc.identifier.doi |
10.1103/PhysRevLett.98.265003 |
en |
dc.identifier.isi |
ISI:000247625100028 |
en |
dc.identifier.volume |
98 |
en |
dc.identifier.issue |
26 |
en |