dc.contributor.author |
Motreanu, D |
en |
dc.contributor.author |
Motreanu, VV |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:27:31Z |
|
dc.date.available |
2014-03-01T01:27:31Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
1078-0947 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18486 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-34748883681&partnerID=40&md5=7ba937934fabdb0a13d777df9409b488 |
en |
dc.subject |
Local linking |
en |
dc.subject |
Multiple solutions |
en |
dc.subject |
Nonsmooth reduction method |
en |
dc.subject |
PS-condition |
en |
dc.subject |
Second order periodic system |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
HAMILTONIAN-SYSTEMS |
en |
dc.subject.other |
2ND-ORDER SYSTEMS |
en |
dc.subject.other |
CRITICAL-POINTS |
en |
dc.title |
Two nontrivial solutions for periodic systems with indefinite linear part |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
We consider second order periodic systems with a nonsmooth potential and an indefinite linear part. We impose conditions under which the nonsmooth Euler functional is unbounded. Then using a nonsmooth variant of the reduction method and the nonsmooth local linking theorem, we establish the existence of at least two nontrivial solutions. |
en |
heal.publisher |
AMER INST MATHEMATICAL SCIENCES |
en |
heal.journalName |
Discrete and Continuous Dynamical Systems |
en |
dc.identifier.isi |
ISI:000247197200009 |
en |
dc.identifier.volume |
19 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
197 |
en |
dc.identifier.epage |
210 |
en |