HEAL DSpace

Two-dimensional discrete Ginzburg-Landau solitons

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Efremidis, NK en
dc.contributor.author Christodoulides, DN en
dc.contributor.author Hizanidis, K en
dc.date.accessioned 2014-03-01T01:27:31Z
dc.date.available 2014-03-01T01:27:31Z
dc.date.issued 2007 en
dc.identifier.issn 1050-2947 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18487
dc.subject ginzburg landau en
dc.subject.classification Optics en
dc.subject.classification Physics, Atomic, Molecular & Chemical en
dc.subject.other Approximation algorithms en
dc.subject.other Diffraction patterns en
dc.subject.other Dispersion (waves) en
dc.subject.other Gain control en
dc.subject.other Numerical analysis en
dc.subject.other Two dimensional en
dc.subject.other Direct simulations en
dc.subject.other Gain curves en
dc.subject.other Ginzburg-Landau solitons en
dc.subject.other Instability dynamics en
dc.subject.other Solitons en
dc.title Two-dimensional discrete Ginzburg-Landau solitons en
heal.type journalArticle en
heal.identifier.primary 10.1103/PhysRevA.76.043839 en
heal.identifier.secondary http://dx.doi.org/10.1103/PhysRevA.76.043839 en
heal.identifier.secondary 043839 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract We study the two-dimensional discrete Ginzburg-Landau equation. In the linear limit, the dispersion and gain curves as well as the diffraction pattern are determined analytically. In the nonlinear case, families of two-dimensional discrete solitons are found numerically as well as approximately in the high-confinement limit. The instability dynamics are analyzed by direct simulations. © 2007 The American Physical Society. en
heal.publisher AMER PHYSICAL SOC en
heal.journalName Physical Review A - Atomic, Molecular, and Optical Physics en
dc.identifier.doi 10.1103/PhysRevA.76.043839 en
dc.identifier.isi ISI:000250619700208 en
dc.identifier.volume 76 en
dc.identifier.issue 4 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής