dc.contributor.author |
Tsekouras, GJ |
en |
dc.contributor.author |
Hatziargyriou, ND |
en |
dc.contributor.author |
Dialynas, EN |
en |
dc.date.accessioned |
2014-03-01T01:27:31Z |
|
dc.date.available |
2014-03-01T01:27:31Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0885-8950 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18488 |
|
dc.subject |
Adaptive vector quantization |
en |
dc.subject |
Chronological load patterns |
en |
dc.subject |
Clustering |
en |
dc.subject |
Customer classes |
en |
dc.subject |
Fuzzy k-means |
en |
dc.subject |
Hierarchical clustering |
en |
dc.subject |
K-means |
en |
dc.subject |
Pattern recognition |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Cluster analysis |
en |
dc.subject.other |
Electric load forecasting |
en |
dc.subject.other |
Electric loads |
en |
dc.subject.other |
Electric power systems |
en |
dc.subject.other |
Vector quantization |
en |
dc.subject.other |
Chronological load patterns |
en |
dc.subject.other |
Classification of customers |
en |
dc.subject.other |
Hierarchical clustering |
en |
dc.subject.other |
Load forecasting |
en |
dc.subject.other |
Pattern recognition |
en |
dc.title |
Two-stage pattern recognition of load curves for classification of electricity customers |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TPWRS.2007.901287 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TPWRS.2007.901287 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
This paper describes a two-stage methodology that was developed for the classification of electricity customers. It is based on pattern recognition methods, such as k-means, Kohonen adaptive vector quantization, fuzzy k-means, and hierarchical clustering, which are theoretically described and properly adapted. In the first stage, typical chronological load curves of various customers are estimated using pattern recognition methods, and their results are compared using six adequacy measures. In the second stage, classification of customers is performed by the same methods and measures, together with the representative load patterns of customers being obtained from the first stage. The results of the first stage can be used for load forecasting of customers and determination of tariffs. The results of the second stage provide valuable information for electricity suppliers in competitive energy markets. The developed methodology is applied on a set of medium voltage customers of the Greek power system, and the obtained results are presented and discussed. © 2007 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Power Systems |
en |
dc.identifier.doi |
10.1109/TPWRS.2007.901287 |
en |
dc.identifier.isi |
ISI:000248352100027 |
en |
dc.identifier.volume |
22 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
1120 |
en |
dc.identifier.epage |
1128 |
en |