HEAL DSpace

Two-stage pattern recognition of load curves for classification of electricity customers

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsekouras, GJ en
dc.contributor.author Hatziargyriou, ND en
dc.contributor.author Dialynas, EN en
dc.date.accessioned 2014-03-01T01:27:31Z
dc.date.available 2014-03-01T01:27:31Z
dc.date.issued 2007 en
dc.identifier.issn 0885-8950 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18488
dc.subject Adaptive vector quantization en
dc.subject Chronological load patterns en
dc.subject Clustering en
dc.subject Customer classes en
dc.subject Fuzzy k-means en
dc.subject Hierarchical clustering en
dc.subject K-means en
dc.subject Pattern recognition en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Cluster analysis en
dc.subject.other Electric load forecasting en
dc.subject.other Electric loads en
dc.subject.other Electric power systems en
dc.subject.other Vector quantization en
dc.subject.other Chronological load patterns en
dc.subject.other Classification of customers en
dc.subject.other Hierarchical clustering en
dc.subject.other Load forecasting en
dc.subject.other Pattern recognition en
dc.title Two-stage pattern recognition of load curves for classification of electricity customers en
heal.type journalArticle en
heal.identifier.primary 10.1109/TPWRS.2007.901287 en
heal.identifier.secondary http://dx.doi.org/10.1109/TPWRS.2007.901287 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract This paper describes a two-stage methodology that was developed for the classification of electricity customers. It is based on pattern recognition methods, such as k-means, Kohonen adaptive vector quantization, fuzzy k-means, and hierarchical clustering, which are theoretically described and properly adapted. In the first stage, typical chronological load curves of various customers are estimated using pattern recognition methods, and their results are compared using six adequacy measures. In the second stage, classification of customers is performed by the same methods and measures, together with the representative load patterns of customers being obtained from the first stage. The results of the first stage can be used for load forecasting of customers and determination of tariffs. The results of the second stage provide valuable information for electricity suppliers in competitive energy markets. The developed methodology is applied on a set of medium voltage customers of the Greek power system, and the obtained results are presented and discussed. © 2007 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Power Systems en
dc.identifier.doi 10.1109/TPWRS.2007.901287 en
dc.identifier.isi ISI:000248352100027 en
dc.identifier.volume 22 en
dc.identifier.issue 3 en
dc.identifier.spage 1120 en
dc.identifier.epage 1128 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής