dc.contributor.author |
Jung, S-M |
en |
dc.contributor.author |
Rassias, TM |
en |
dc.date.accessioned |
2014-03-01T01:27:31Z |
|
dc.date.available |
2014-03-01T01:27:31Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0096-3003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18490 |
|
dc.subject |
Bernoulli's differential equation |
en |
dc.subject |
Generalized Hyers-Ulam stability |
en |
dc.subject |
Hyers-Ulam stability |
en |
dc.subject |
Hyers-Ulam-Rassias stability |
en |
dc.subject |
Stability |
en |
dc.subject |
Ulam's problem |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Asymptotic stability |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Differential equations |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Bernoulli's differential equation |
en |
dc.subject.other |
Generalized Hyers-Ulam stability |
en |
dc.subject.other |
Hyers-Ulam stability |
en |
dc.subject.other |
Hyers-Ulam-Rassias stability |
en |
dc.subject.other |
Ulam's problem |
en |
dc.subject.other |
Approximation theory |
en |
dc.title |
Ulam's problem for approximate homomorphisms in connection with Bernoulli's differential equation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.amc.2006.08.120 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.amc.2006.08.120 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
Ulam's problem for approximate homomorphisms and its application to certain types of differential equations was first investigated by Alsina and Ger. They proved in [C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl. 2 (1998) 373-380] that if a differentiable function f : I -> R satisfies the differential inequality vertical bar y'(t) - y(t)vertical bar <= epsilon, where I is an open subinterval of R, then there exists a solution f(0) : I R -> of the equation y'(t) = y(t) such that vertical bar(t) - fo(t)vertical bar <= 3 epsilon for any t epsilon I. In this paper, we investigate the Ulam's problem concerning the Bernoulli's differential equation of the form y(t)(-x)y'(t) + g(t)y(t)(1-x) + h(t) = 0. (C) 2006 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
Applied Mathematics and Computation |
en |
dc.identifier.doi |
10.1016/j.amc.2006.08.120 |
en |
dc.identifier.isi |
ISI:000246830900028 |
en |
dc.identifier.volume |
187 |
en |
dc.identifier.issue |
1 SPEC. ISS. |
en |
dc.identifier.spage |
223 |
en |
dc.identifier.epage |
227 |
en |