HEAL DSpace

Uncertainty assessment of future hydroclimatic predictions: A comparison of probabilistic and scenario-based approaches

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koutsoyiannis, D en
dc.contributor.author Efstratiadis, A en
dc.contributor.author Georgakakos, KP en
dc.date.accessioned 2014-03-01T01:27:32Z
dc.date.available 2014-03-01T01:27:32Z
dc.date.issued 2007 en
dc.identifier.issn 1525-755X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18493
dc.subject.classification Meteorology & Atmospheric Sciences en
dc.subject.other climate modeling en
dc.subject.other climate prediction en
dc.subject.other climate variation en
dc.subject.other hydrological modeling en
dc.subject.other Monte Carlo analysis en
dc.subject.other probability en
dc.subject.other statistical analysis en
dc.subject.other stochasticity en
dc.subject.other uncertainty analysis en
dc.subject.other Eurasia en
dc.subject.other Europe en
dc.subject.other Greece en
dc.subject.other Southern Europe en
dc.title Uncertainty assessment of future hydroclimatic predictions: A comparison of probabilistic and scenario-based approaches en
heal.type journalArticle en
heal.identifier.primary 10.1175/JHM576.1 en
heal.identifier.secondary http://dx.doi.org/10.1175/JHM576.1 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract During the last decade, numerous studies have been carried out to predict future climate based on climatic models run on the global scale and fed by plausible scenarios about anthropogenic forcing to climate. Based on climatic model output, hydrologic models attempt then to predict future hydrologic regimes at regional scales. Much less systematic work has been done to estimate climatic uncertainty and to assess the climatic and hydrologic model outputs within an uncertainty perspective. In this study, a stochastic framework for future climatic uncertainty is proposed, based on the following lines: 1) climate is not constant but rather varying in time and expressed by the long-term (e.g., 30 yr) time average of a natural process, defined on a finescale; 2) the evolution of climate is represented as a stochastic process; 3) the distributional parameters of a process, marginal and dependence, are estimated from an available sample by statistical methods; 4) the climatic uncertainty is the result of at least two factors, the climatic variability and the uncertainty of parameter estimation; 5) a climatic process exhibits a scaling behavior, also known as long-range dependence or the Hurst phenomenon; and 6) because of this dependence, the uncertainty limits of the future are affected by the available observations of the past. The last two lines differ from classical statistical considerations and produce uncertainty limits that eventually are much wider than those of classical statistics. A combination of analytical and Monte Carlo methods is developed to determine uncertainty limits for the nontrivial scaling case. The framework developed is applied with temperature, rainfall, and runoff data from a catchment in Greece, for which data exist for about a century. The uncertainty limits are then superimposed onto deterministic projections up to 2050, obtained for several scenarios and climatic models combined with a hydrologic model. These projections indicate a significant increase of temperature in the future, beyond uncertainty bands, and no significant change of rainfall and runoff as they lie well within uncertainty limits. © 2007 American Meteorological Society. en
heal.publisher AMER METEOROLOGICAL SOC en
heal.journalName Journal of Hydrometeorology en
dc.identifier.doi 10.1175/JHM576.1 en
dc.identifier.isi ISI:000247619500001 en
dc.identifier.volume 8 en
dc.identifier.issue 3 en
dc.identifier.spage 261 en
dc.identifier.epage 281 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής