HEAL DSpace

Vehicle velocity estimation based on RSS measurements

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stamoulakatos, TS en
dc.contributor.author Markopoulos, AS en
dc.contributor.author Anagnostou, ME en
dc.contributor.author Theologou, ME en
dc.date.accessioned 2014-03-01T01:27:33Z
dc.date.available 2014-03-01T01:27:33Z
dc.date.issued 2007 en
dc.identifier.issn 0929-6212 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18501
dc.subject Clustering en
dc.subject HIDden Markov Model en
dc.subject Location based services en
dc.subject Pattern recognition en
dc.subject Propagation modeling en
dc.subject Traffic information en
dc.subject WCDMA en
dc.subject.classification Telecommunications en
dc.subject.other Code division multiple access en
dc.subject.other Data acquisition en
dc.subject.other Information retrieval systems en
dc.subject.other Information services en
dc.subject.other Mobile telecommunication systems en
dc.subject.other Pattern recognition en
dc.subject.other Telecommunication traffic en
dc.subject.other Velocity measurement en
dc.subject.other Mobile Terminal (MT) velocity en
dc.subject.other Propagation modeling en
dc.subject.other Received signal strength (RSS) en
dc.subject.other Velocity estimation en
dc.subject.other Signal processing en
dc.title Vehicle velocity estimation based on RSS measurements en
heal.type journalArticle en
heal.identifier.primary 10.1007/s11277-006-9119-5 en
heal.identifier.secondary http://dx.doi.org/10.1007/s11277-006-9119-5 en
heal.language English en
heal.publicationDate 2007 en
heal.abstract This paper presents a technique which is based on pattern recognition techniques, in order to estimate Mobile Terminal (MT) velocity. The proposed technique applies on received signal strength (RSS) measurements and more precisely on information extracted from Iub air interface, in wIDeband code-division multiple access (WCDMA) systems for transmission control purposes. Pattern recognition is performed by HIDden Markov Model (HMM), which is trained with downlink signal strength measurements for specific areas, employing Clustering LARge Applications (CLARA) like a clustering method. Accurate results from a single probe vehicle show the potential of the method, when applied to large scale of MTs. © Springer Science+Business Media B.V. 2007. en
heal.publisher SPRINGER en
heal.journalName Wireless Personal Communications en
dc.identifier.doi 10.1007/s11277-006-9119-5 en
dc.identifier.isi ISI:000243823300006 en
dc.identifier.volume 40 en
dc.identifier.issue 4 en
dc.identifier.spage 523 en
dc.identifier.epage 538 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής