dc.contributor.author |
Stamoulakatos, TS |
en |
dc.contributor.author |
Markopoulos, AS |
en |
dc.contributor.author |
Anagnostou, ME |
en |
dc.contributor.author |
Theologou, ME |
en |
dc.date.accessioned |
2014-03-01T01:27:33Z |
|
dc.date.available |
2014-03-01T01:27:33Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
0929-6212 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18501 |
|
dc.subject |
Clustering |
en |
dc.subject |
HIDden Markov Model |
en |
dc.subject |
Location based services |
en |
dc.subject |
Pattern recognition |
en |
dc.subject |
Propagation modeling |
en |
dc.subject |
Traffic information |
en |
dc.subject |
WCDMA |
en |
dc.subject.classification |
Telecommunications |
en |
dc.subject.other |
Code division multiple access |
en |
dc.subject.other |
Data acquisition |
en |
dc.subject.other |
Information retrieval systems |
en |
dc.subject.other |
Information services |
en |
dc.subject.other |
Mobile telecommunication systems |
en |
dc.subject.other |
Pattern recognition |
en |
dc.subject.other |
Telecommunication traffic |
en |
dc.subject.other |
Velocity measurement |
en |
dc.subject.other |
Mobile Terminal (MT) velocity |
en |
dc.subject.other |
Propagation modeling |
en |
dc.subject.other |
Received signal strength (RSS) |
en |
dc.subject.other |
Velocity estimation |
en |
dc.subject.other |
Signal processing |
en |
dc.title |
Vehicle velocity estimation based on RSS measurements |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11277-006-9119-5 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11277-006-9119-5 |
en |
heal.language |
English |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
This paper presents a technique which is based on pattern recognition techniques, in order to estimate Mobile Terminal (MT) velocity. The proposed technique applies on received signal strength (RSS) measurements and more precisely on information extracted from Iub air interface, in wIDeband code-division multiple access (WCDMA) systems for transmission control purposes. Pattern recognition is performed by HIDden Markov Model (HMM), which is trained with downlink signal strength measurements for specific areas, employing Clustering LARge Applications (CLARA) like a clustering method. Accurate results from a single probe vehicle show the potential of the method, when applied to large scale of MTs. © Springer Science+Business Media B.V. 2007. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Wireless Personal Communications |
en |
dc.identifier.doi |
10.1007/s11277-006-9119-5 |
en |
dc.identifier.isi |
ISI:000243823300006 |
en |
dc.identifier.volume |
40 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
523 |
en |
dc.identifier.epage |
538 |
en |