dc.contributor.author |
Stamou, AI |
en |
dc.contributor.author |
Chapsas, DG |
en |
dc.contributor.author |
Christodoulou, GC |
en |
dc.date.accessioned |
2014-03-01T01:27:38Z |
|
dc.date.available |
2014-03-01T01:27:38Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0022-1686 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18515 |
|
dc.subject |
Computational Fluid Dynamics (CFD) |
en |
dc.subject |
Expansion flow |
en |
dc.subject |
Mathematical model |
en |
dc.subject |
Modified Rouse curve |
en |
dc.subject |
Supercritical flow |
en |
dc.subject |
Volume of Fluid (VOF) method |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.classification |
Water Resources |
en |
dc.subject.other |
Engineering research |
en |
dc.subject.other |
Expansion |
en |
dc.subject.other |
Flow of water |
en |
dc.subject.other |
Fluid mechanics |
en |
dc.subject.other |
Free volume |
en |
dc.subject.other |
Hydraulics |
en |
dc.subject.other |
Shore protection |
en |
dc.subject.other |
Applied (CO) |
en |
dc.subject.other |
CFD modeling |
en |
dc.subject.other |
Experimental data |
en |
dc.subject.other |
Experimental results |
en |
dc.subject.other |
Flow conditioning |
en |
dc.subject.other |
Free surfaces |
en |
dc.subject.other |
Hydraulic engineering |
en |
dc.subject.other |
Inner walls |
en |
dc.subject.other |
International association |
en |
dc.subject.other |
Numerical modelling |
en |
dc.subject.other |
Open channels |
en |
dc.subject.other |
Shock fronts |
en |
dc.subject.other |
Super-critical |
en |
dc.subject.other |
Supercritical flows |
en |
dc.subject.other |
Surface profiling |
en |
dc.subject.other |
Volume of fluid (VOF) methods |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
computational fluid dynamics |
en |
dc.subject.other |
experimental study |
en |
dc.subject.other |
flow structure |
en |
dc.subject.other |
flow velocity |
en |
dc.subject.other |
Froude number |
en |
dc.subject.other |
numerical model |
en |
dc.subject.other |
open channel flow |
en |
dc.subject.other |
optimization |
en |
dc.subject.other |
supercritical flow |
en |
dc.subject.other |
three-dimensional modeling |
en |
dc.title |
3-D numerical modeling of supercritical flow in gradual expansions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.3826/jhr.2008.3162 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.3826/jhr.2008.3162 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
A 3-D CFD model based on the Volume of Fluid method to calculate the free surface was used to study supercritical flow in gradual open channel expansions. The model was first applied to a modified Rouse expansion, for which extensive experimental data are available. A detailed comparison between the numerical and the experimental results concerning surface profiles, velocities, free surface uniformity, and shock front location showed satisfactory agreement, especially for lower supercritical Froude numbers. The model was subsequently applied to optimize and finalize the design of a compound expansion structure with variable bottom elevation, piers, and inner walls. CFD calculation showed that flow conditions in this structure are satisfactory, provided that bottom ramps are used to ensure a uniform variation of the bottom elevation. © 2008 International Association of Hydraulic Engineering and Research. |
en |
heal.publisher |
INT ASSOC HYDRAULIC RESEARCH |
en |
heal.journalName |
Journal of Hydraulic Research |
en |
dc.identifier.doi |
10.3826/jhr.2008.3162 |
en |
dc.identifier.isi |
ISI:000257172400012 |
en |
dc.identifier.volume |
46 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
402 |
en |
dc.identifier.epage |
409 |
en |