HEAL DSpace

A finite differences formulation for the linear and nonlinear dynamics of 2D catenary risers

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chatjigeorgiou, IK en
dc.date.accessioned 2014-03-01T01:27:40Z
dc.date.available 2014-03-01T01:27:40Z
dc.date.issued 2008 en
dc.identifier.issn 0029-8018 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18530
dc.subject Box method en
dc.subject Finite differences en
dc.subject Heave excitations en
dc.subject Marine risers en
dc.subject.classification Engineering, Civil en
dc.subject.classification Engineering, Ocean en
dc.subject.classification Oceanography en
dc.subject.classification Water Resources en
dc.subject.other Dynamics en
dc.subject.other Finite difference method en
dc.subject.other Mathematical models en
dc.subject.other Numerical methods en
dc.subject.other Two dimensional en
dc.subject.other Dynamic equilibrium problem en
dc.subject.other Reduced linearized formulation en
dc.subject.other Relaxation method en
dc.subject.other Marine risers en
dc.subject.other Dynamics en
dc.subject.other Finite difference method en
dc.subject.other Marine risers en
dc.subject.other Mathematical models en
dc.subject.other Numerical methods en
dc.subject.other Two dimensional en
dc.subject.other finite difference method en
dc.subject.other loading en
dc.subject.other numerical method en
dc.subject.other riser en
dc.subject.other transform en
dc.subject.other two-dimensional modeling en
dc.title A finite differences formulation for the linear and nonlinear dynamics of 2D catenary risers en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.oceaneng.2008.01.006 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.oceaneng.2008.01.006 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract A finite differences (FD) solution method is proposed for the numerical treatment of the dynamic equilibrium problem of 2D catenary risers. The method is based on the so-called Box approximation, which in the scope of the present contribution is applied to the complete nonlinear model as well as to the reduced linearized formulation. The application of the Box method transforms the original governing systems into convenient sets of algebraic equations, which in turn are solved efficiently by the relaxation method. Extensive numerical calculations are presented that describe the dynamic behaviour of the structure and evaluate the amplification in loading due to the dynamic components. The effect of the geometric nonlinearities is assessed through comparative calculations that concern both mathematical formulations examined in the present, i.e. the complete nonlinear, and the reduced linearized model. Special attention is paid to the heave excitations as they amplify significantly the magnitudes of the loading components. (C) 2008 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Ocean Engineering en
dc.identifier.doi 10.1016/j.oceaneng.2008.01.006 en
dc.identifier.isi ISI:000256126400003 en
dc.identifier.volume 35 en
dc.identifier.issue 7 en
dc.identifier.spage 616 en
dc.identifier.epage 636 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής