HEAL DSpace

A fuzzy clustering approach toward Hidden Markov random field models for enhanced spatially constrained image segmentation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chatzis, SP en
dc.contributor.author Varvarigou, TA en
dc.date.accessioned 2014-03-01T01:27:40Z
dc.date.available 2014-03-01T01:27:40Z
dc.date.issued 2008 en
dc.identifier.issn 1063-6706 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18534
dc.subject Fuzzy clustering en
dc.subject Hidden Markov models en
dc.subject Image segmentation en
dc.subject Mean-field approximation en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Applications en
dc.subject.other Digital image storage en
dc.subject.other Flow of solids en
dc.subject.other Fuzzy rules en
dc.subject.other Fuzzy sets en
dc.subject.other Fuzzy systems en
dc.subject.other Hidden Markov models en
dc.subject.other Image processing en
dc.subject.other Image segmentation en
dc.subject.other Markov processes en
dc.subject.other Polynomial approximation en
dc.subject.other Speech recognition en
dc.subject.other Clustering en
dc.subject.other Clustering approaches en
dc.subject.other Clustering problems en
dc.subject.other Clustering procedures en
dc.subject.other Constrained clustering en
dc.subject.other Fuzzy c-means en
dc.subject.other Fuzzy objective functions en
dc.subject.other Hidden Markov random field models en
dc.subject.other Hmrf models en
dc.subject.other Mean-field approximation en
dc.subject.other Fuzzy clustering en
dc.title A fuzzy clustering approach toward Hidden Markov random field models for enhanced spatially constrained image segmentation en
heal.type journalArticle en
heal.identifier.primary 10.1109/TFUZZ.2008.2005008 en
heal.identifier.secondary http://dx.doi.org/10.1109/TFUZZ.2008.2005008 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract Hidden Markov random field (HMRF) models have been widely used for image segmentation, as they appear naturally in problems where a spatially constrained clustering scheme, taking into account the mutual influences of neighboring sites, is asked for. Fuzzy c-means (FCM) clustering has also been successfully applied in several image segmentation applications. In this paper, we combine the benefits of these two approaches, by proposing a novel treatment of HMRF models, formulated on the basis of a fuzzy clustering principle. We approach the HMRF model treatment problem as an FCM-type clustering problem, effected by introducing the explicit assumptions of the HMRF model into the fuzzy clustering procedure. Our approach utilizes a fuzzy objective function regularized by Kullback--Leibler divergence information, and is facilitated by application of a mean-field-like approximation of the MRF prior. We experimentally demonstrate the superiority of the proposed approach over competing methodologies, considering a series of synthetic and real-world image segmentation applications. © 2008 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Fuzzy Systems en
dc.identifier.doi 10.1109/TFUZZ.2008.2005008 en
dc.identifier.isi ISI:000260046700019 en
dc.identifier.volume 16 en
dc.identifier.issue 5 en
dc.identifier.spage 1351 en
dc.identifier.epage 1361 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής