dc.contributor.author |
Chatzis, SP |
en |
dc.contributor.author |
Varvarigou, TA |
en |
dc.date.accessioned |
2014-03-01T01:27:40Z |
|
dc.date.available |
2014-03-01T01:27:40Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1063-6706 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18534 |
|
dc.subject |
Fuzzy clustering |
en |
dc.subject |
Hidden Markov models |
en |
dc.subject |
Image segmentation |
en |
dc.subject |
Mean-field approximation |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Applications |
en |
dc.subject.other |
Digital image storage |
en |
dc.subject.other |
Flow of solids |
en |
dc.subject.other |
Fuzzy rules |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Fuzzy systems |
en |
dc.subject.other |
Hidden Markov models |
en |
dc.subject.other |
Image processing |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Markov processes |
en |
dc.subject.other |
Polynomial approximation |
en |
dc.subject.other |
Speech recognition |
en |
dc.subject.other |
Clustering |
en |
dc.subject.other |
Clustering approaches |
en |
dc.subject.other |
Clustering problems |
en |
dc.subject.other |
Clustering procedures |
en |
dc.subject.other |
Constrained clustering |
en |
dc.subject.other |
Fuzzy c-means |
en |
dc.subject.other |
Fuzzy objective functions |
en |
dc.subject.other |
Hidden Markov random field models |
en |
dc.subject.other |
Hmrf models |
en |
dc.subject.other |
Mean-field approximation |
en |
dc.subject.other |
Fuzzy clustering |
en |
dc.title |
A fuzzy clustering approach toward Hidden Markov random field models for enhanced spatially constrained image segmentation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TFUZZ.2008.2005008 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TFUZZ.2008.2005008 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Hidden Markov random field (HMRF) models have been widely used for image segmentation, as they appear naturally in problems where a spatially constrained clustering scheme, taking into account the mutual influences of neighboring sites, is asked for. Fuzzy c-means (FCM) clustering has also been successfully applied in several image segmentation applications. In this paper, we combine the benefits of these two approaches, by proposing a novel treatment of HMRF models, formulated on the basis of a fuzzy clustering principle. We approach the HMRF model treatment problem as an FCM-type clustering problem, effected by introducing the explicit assumptions of the HMRF model into the fuzzy clustering procedure. Our approach utilizes a fuzzy objective function regularized by Kullback--Leibler divergence information, and is facilitated by application of a mean-field-like approximation of the MRF prior. We experimentally demonstrate the superiority of the proposed approach over competing methodologies, considering a series of synthetic and real-world image segmentation applications. © 2008 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Fuzzy Systems |
en |
dc.identifier.doi |
10.1109/TFUZZ.2008.2005008 |
en |
dc.identifier.isi |
ISI:000260046700019 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
1351 |
en |
dc.identifier.epage |
1361 |
en |