HEAL DSpace

A generalized Ritz method for partial differential equations in domains of arbitrary geometry using global shape functions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Katsikadelis, JT en
dc.date.accessioned 2014-03-01T01:27:41Z
dc.date.available 2014-03-01T01:27:41Z
dc.date.issued 2008 en
dc.identifier.issn 0955-7997 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18536
dc.subject boundary element method en
dc.subject partial differential equations en
dc.subject meshless en
dc.subject analog equation en
dc.subject Ritz method en
dc.subject variational en
dc.subject optimal rnultiquadrics en
dc.subject global shape functions en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.title A generalized Ritz method for partial differential equations in domains of arbitrary geometry using global shape functions en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.enganabound.2007.09.001 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.enganabound.2007.09.001 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract A boundary element method (BEM)-based variational method is presented for the solution of elliptic PDEs describing the mechanical response of general inhomogeneous anisotropic bodies of arbitrary geometry. The equations, which in general have variable coefficients, may be linear or nonlinear. Using the concept of the analog equation of Katsikadelis the original equation is converted into a linear membrane (Poisson) or a linear plate (biharmonic) equation, depending on the order of the PDE under a fictitious load, which is approximated with radial basis function series of multiquadric (MQ) type. The integral representation of the solution of the substitute equation yields shape functions, which are global and satisfy both essential and natural boundary conditions, hence the name generalized Ritz method. The minimization of the functional that produces the PDE as the associated Euler-Lagrange equation yields not only the Ritz coefficients but also permits the evaluation of optimal values for the shape parameters of the MQs as well as optimal position of their centers, minimizing thus the error. If a functional does not exists or cannot be constructed as it is the usual case of nonlinear PDEs, the Galerkin principle can be applied. Since the arising domain integrals are converted into boundary line integrals, the method is boundary-only and, therefore, it maintains all the advantages of the pure BEM. Example problems are studied, which illustrate the method and demonstrate its efficiency and great accuracy. (C) 2007 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS en
dc.identifier.doi 10.1016/j.enganabound.2007.09.001 en
dc.identifier.isi ISI:000256536000001 en
dc.identifier.volume 32 en
dc.identifier.issue 5 en
dc.identifier.spage 353 en
dc.identifier.epage 367 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής