dc.contributor.author |
Provatidis, CG |
en |
dc.date.accessioned |
2014-03-01T01:27:41Z |
|
dc.date.available |
2014-03-01T01:27:41Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1559-3959 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18538 |
|
dc.subject |
global collocation |
en |
dc.subject |
Coons interpolation |
en |
dc.subject |
Poisson's equation |
en |
dc.subject.classification |
Materials Science, Multidisciplinary |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
COONS-PATCH MACROELEMENTS |
en |
dc.subject.other |
APPROXIMATIONS |
en |
dc.subject.other |
SPACES |
en |
dc.title |
A global collocation method for two-dimensional rectangular domains |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.2140/jomms.2008.3.185 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.2140/jomms.2008.3.185 |
en |
heal.identifier.secondary |
10.2140/jomms.2008.3.185 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
This paper proposes the use of a global collocation procedure in conjunction with a previously developed functional set suitable for the numerical solution of Poisson's equation in rectangular domains. We propose to expand the unknown variable in a bivariate series of monomials x(i)y(i) that exist in Pascal's triangle. We also propose the use of the bivariate Gordon-Coons interpolation, apart from previous intuitive choices of the aforementioned monomials. The theory is sustained by two numerical examples of Dirichlet boundary conditions, in which we find that the approximate solution monotonically converges towards the exact solution. |
en |
heal.publisher |
MATHEMATICAL SCIENCE PUBL |
en |
heal.journalName |
JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES |
en |
dc.identifier.doi |
10.2140/jomms.2008.3.185 |
en |
dc.identifier.isi |
ISI:000256438700010 |
en |
dc.identifier.volume |
3 |
en |
dc.identifier.issue |
1 |
en |